Suppr超能文献

一种新型碳酸酐酶(ε类)的进化谱系是羧酶体外壳的一个组成部分。

A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell.

作者信息

So Anthony K-C, Espie George S, Williams Eric B, Shively Jessup M, Heinhorst Sabine, Cannon Gordon C

机构信息

Department of Botany, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada.

出版信息

J Bacteriol. 2004 Feb;186(3):623-30. doi: 10.1128/JB.186.3.623-630.2004.

Abstract

A significant portion of the total carbon fixed in the biosphere is attributed to the autotrophic metabolism of prokaryotes. In cyanobacteria and many chemolithoautotrophic bacteria, CO(2) fixation is catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), most if not all of which is packaged in protein microcompartments called carboxysomes. These structures play an integral role in a cellular CO(2)-concentrating mechanism and are essential components for autotrophic growth. Here we report that the carboxysomal shell protein, CsoS3, from Halothiobacillus neapolitanus is a novel carbonic anhydrase (epsilon-class CA) that has an evolutionary lineage distinct from those previously recognized in animals, plants, and other prokaryotes. Functional CAs encoded by csoS3 homologues were also identified in the cyanobacteria Prochlorococcus sp. and Synechococcus sp., which dominate the oligotrophic oceans and are major contributors to primary productivity. The location of the carboxysomal CA in the shell suggests that it could supply the active sites of RuBisCO in the carboxysome with the high concentrations of CO(2) necessary for optimal RuBisCO activity and efficient carbon fixation in these prokaryotes, which are important contributors to the global carbon cycle.

摘要

生物圈中固定的总碳的很大一部分归因于原核生物的自养代谢。在蓝细菌和许多化能自养细菌中,二氧化碳的固定是由1,5-二磷酸核酮糖羧化酶/加氧酶(RuBisCO)催化的,其中大部分(如果不是全部的话)被包装在称为羧酶体的蛋白质微区室中。这些结构在细胞二氧化碳浓缩机制中起着不可或缺的作用,是自养生长的重要组成部分。在此我们报告,来自那不勒斯嗜盐硫杆菌的羧酶体外壳蛋白CsoS3是一种新型碳酸酐酶(ε类CA),其进化谱系与先前在动物、植物和其他原核生物中所认识的不同。在蓝细菌原绿球藻属和聚球藻属中也鉴定出了由csoS3同源物编码的功能性碳酸酐酶,这些蓝细菌在贫营养海洋中占主导地位,是初级生产力的主要贡献者。羧酶体碳酸酐酶在外壳中的位置表明,它可以为羧酶体中的RuBisCO活性位点提供高浓度的二氧化碳,这是这些原核生物中RuBisCO最佳活性和高效碳固定所必需的,而这些原核生物对全球碳循环有重要贡献。

相似文献

3
Carboxysomal carbonic anhydrases.羧酶体碳酸酐酶
Subcell Biochem. 2014;75:89-103. doi: 10.1007/978-94-007-7359-2_6.
8
Identification of a carbonic anhydrase-Rubisco complex within the alpha-carboxysome.鉴定在α-羧基体中存在碳酸酐酶- Rubisco 复合物。
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2308600120. doi: 10.1073/pnas.2308600120. Epub 2023 Oct 20.
9

引用本文的文献

1
5
The ties that bind. Disordered linkers underpin carboxysome construction.连接的纽带。无序连接子是羧酶体构建的基础。
Proc Natl Acad Sci U S A. 2023 Nov 7;120(45):e2316828120. doi: 10.1073/pnas.2316828120. Epub 2023 Oct 27.
6
Identification of a carbonic anhydrase-Rubisco complex within the alpha-carboxysome.鉴定在α-羧基体中存在碳酸酐酶- Rubisco 复合物。
Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2308600120. doi: 10.1073/pnas.2308600120. Epub 2023 Oct 20.
8
Towards engineering a hybrid carboxysome.朝着工程化混合羧酶体的方向努力。
Photosynth Res. 2023 May;156(2):265-277. doi: 10.1007/s11120-023-01009-x. Epub 2023 Mar 9.
10
Rubisco forms a lattice inside alpha-carboxysomes.Rubisco 在 alpha-羧酶体内部形成晶格。
Nat Commun. 2022 Aug 18;13(1):4863. doi: 10.1038/s41467-022-32584-7.

本文引用的文献

1
Carboxysome genomics: a status report.羧酶体基因组学:现状报告。
Funct Plant Biol. 2002 Apr;29(3):175-182. doi: 10.1071/PP01200.
6
CO2 CONCENTRATING MECHANISMS IN PHOTOSYNTHETIC MICROORGANISMS.光合微生物中的二氧化碳浓缩机制
Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:539-570. doi: 10.1146/annurev.arplant.50.1.539.
9
Organization of carboxysome genes in the thiobacilli.硫杆菌中羧酶体基因的组织方式。
Curr Microbiol. 2003 Feb;46(2):115-9. doi: 10.1007/s00284-002-3825-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验