Suppr超能文献

用于 KarmaLoop 全原子蛋白质环建模的高度准确且高效的深度学习范式。

Highly Accurate and Efficient Deep Learning Paradigm for Full-Atom Protein Loop Modeling with KarmaLoop.

作者信息

Wang Tianyue, Zhang Xujun, Zhang Odin, Chen Guangyong, Pan Peichen, Wang Ercheng, Wang Jike, Wu Jialu, Zhou Donghao, Wang Langcheng, Jin Ruofan, Chen Shicheng, Shen Chao, Kang Yu, Hsieh Chang-Yu, Hou Tingjun

机构信息

Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.

Zhejiang Laboratory, Hangzhou 311100, Zhejiang, China.

出版信息

Research (Wash D C). 2024 Jul 25;7:0408. doi: 10.34133/research.0408. eCollection 2024.

Abstract

Protein loop modeling is a challenging yet highly nontrivial task in protein structure prediction. Despite recent progress, existing methods including knowledge-based, ab initio, hybrid, and deep learning (DL) methods fall substantially short of either atomic accuracy or computational efficiency. To overcome these limitations, we present KarmaLoop, a novel paradigm that distinguishes itself as the first DL method centered on full-atom (encompassing both backbone and side-chain heavy atoms) protein loop modeling. Our results demonstrate that KarmaLoop considerably outperforms conventional and DL-based methods of loop modeling in terms of both accuracy and efficiency, with the average RMSDs of 1.77 and 1.95 Å for the CASP13+14 and CASP15 benchmark datasets, respectively, and manifests at least 2 orders of magnitude speedup in general compared with other methods. Consequently, our comprehensive evaluations indicate that KarmaLoop provides a state-of-the-art DL solution for protein loop modeling, with the potential to hasten the advancement of protein engineering, antibody-antigen recognition, and drug design.

摘要

在蛋白质结构预测中,蛋白质环建模是一项具有挑战性但又极为重要的任务。尽管最近取得了进展,但现有的方法,包括基于知识的方法、从头算方法、混合方法和深度学习(DL)方法,在原子精度或计算效率方面都存在很大不足。为了克服这些限制,我们提出了KarmaLoop,这是一种新颖的范式,它作为第一种以全原子(包括主链和侧链重原子)蛋白质环建模为中心的DL方法而脱颖而出。我们的结果表明,KarmaLoop在准确性和效率方面都大大优于传统的和基于DL的环建模方法,对于CASP13+14和CASP15基准数据集,平均均方根偏差(RMSD)分别为1.77 Å和1.95 Å,并且与其他方法相比,总体上至少有两个数量级的加速。因此,我们的综合评估表明,KarmaLoop为蛋白质环建模提供了一种最先进的DL解决方案,有可能加速蛋白质工程、抗体-抗原识别和药物设计的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be7c/11268956/c81d27888b38/research.0408.fig.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验