Suppr超能文献

CYCLICCAE:一种用于高效异手性大环骨架采样的构象自动编码器。

CYCLICCAE: A CONFORMATIONAL AUTOENCODER FOR EFFICIENT HETEROCHIRAL MACROCYCLIC BACKBONE SAMPLING.

作者信息

Powers Andrew C, Renfrew P Douglas, Hosseinzadeh Parisa, Mulligan Vikram Khipple

机构信息

Department of Bioengineering, University of Oregon, Eugene, Oregon.

Center for Computational Biology, Flatiron Institute, New York, New York.

出版信息

bioRxiv. 2025 Feb 27:2025.02.21.639569. doi: 10.1101/2025.02.21.639569.

Abstract

Macrocycles are a promising therapeutic class. The incorporation of heterochiral and non-natural chemical building-blocks presents challenges for rational design, however. With no existing machine learning methods tailored for heterochiral macrocycle design, we developed a novel convolutional autoencoder model to rapidly generate energetically favorable macrocycle backbones for heterochiral design and structure prediction. Our approach surpasses the current state-of-the-art method, Generalized Kinematic loop closure (GenKIC) in the Rosetta software suite. Given the absence of large, available macrocycle datasets, we created a custom dataset in-house and . Our model, CyclicCAE, produces energetically stable backbones and designable structures more rapidly than GenKIC. It enables users to perform energy minimization, generate structurally similar or diverse inputs via MCMC, and conduct inpainting with fixed anchors or motifs. We propose that this novel method will accelerate the development of stable macrocycles, speeding up macrocycle drug design pipelines.

摘要

大环化合物是一类很有前景的治疗药物。然而,引入异手性和非天然化学构建块给合理设计带来了挑战。由于没有专门针对异手性大环化合物设计的现有机器学习方法,我们开发了一种新颖的卷积自动编码器模型,以快速生成能量上有利的大环化合物骨架,用于异手性设计和结构预测。我们的方法超越了Rosetta软件套件中当前的最先进方法——广义运动学环闭合(GenKIC)。鉴于缺乏可用的大型大环化合物数据集,我们在内部创建了一个自定义数据集。我们的模型CyclicCAE比GenKIC更快地生成能量稳定的骨架和可设计的结构。它使用户能够进行能量最小化,通过马尔可夫链蒙特卡罗(MCMC)生成结构相似或多样的输入,并使用固定锚点或基序进行图像修复。我们认为,这种新方法将加速稳定大环化合物的开发,加快大环药物设计流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91e5/11888347/56e55da36359/nihpp-2025.02.21.639569v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验