Suppr超能文献

从人类营养角度看主食作物的微量营养素育种

Breeding for micronutrients in staple food crops from a human nutrition perspective.

作者信息

Welch Ross M, Graham Robin D

机构信息

USDA-ARS, US Plant, Soil and Nutrition Laboratory, Cornell University, Tower Road, Ithaca, NY 14853-0001, USA.

出版信息

J Exp Bot. 2004 Feb;55(396):353-64. doi: 10.1093/jxb/erh064.

Abstract

Over three billion people are currently micronutrient (i.e. micronutrient elements and vitamins) malnourished, resulting in egregious societal costs including learning disabilities among children, increased morbidity and mortality rates, lower worker productivity, and high healthcare costs, all factors diminishing human potential, felicity, and national economic development. Nutritional deficiencies (e.g. iron, zinc, vitamin A) account for almost two-thirds of the childhood death worldwide. Most of those afflicted are dependent on staple crops for their sustenance. Importantly, these crops can be enriched (i.e. 'biofortified') with micronutrients using plant breeding and/or transgenic strategies, because micronutrient enrichment traits exist within their genomes that can to used for substantially increasing micronutrient levels in these foods without negatively impacting crop productivity. Furthermore, 'proof of concept' studies have been published using transgenic approaches to biofortify staple crops (e.g. high beta-carotene 'golden rice' grain, high ferritin-Fe rice grain, etc). In addition, micronutrient element enrichment of seeds can increase crop yields when sowed to micronutrient-poor soils, assuring their adoption by farmers. Bioavailability issues must be addressed when employing plant breeding and/or transgenic approaches to reduce micronutrient malnutrition. Enhancing substances (e.g. ascorbic acid, S-containing amino acids, etc) that promote micronutrient bioavailability or decreasing antinutrient substances (e.g. phytate, polyphenolics, etc) that inhibit micronutrient bioavailability, are both options that could be pursued, but the latter approach should be used with caution. The world's agricultural community should adopt plant breeding and other genetic technologies to improve human health, and the world's nutrition and health communities should support these efforts. Sustainable solutions to this enormous global problem of 'hidden hunger' will not come without employing agricultural approaches.

摘要

目前,超过30亿人存在微量营养素(即微量元素和维生素)营养不良的问题,这带来了惊人的社会成本,包括儿童学习障碍、发病率和死亡率上升、工人生产力下降以及高昂的医疗成本,所有这些因素都在削弱人类潜力、幸福感和国家经济发展。营养缺乏(如铁、锌、维生素A)占全球儿童死亡人数的近三分之二。大多数受影响的人依靠主食维持生计。重要的是,利用植物育种和/或转基因策略,可以使这些作物富含(即“生物强化”)微量营养素,因为它们的基因组中存在微量营养素富集性状,可用于大幅提高这些食物中的微量营养素水平,而不会对作物生产力产生负面影响。此外,已经发表了使用转基因方法对主食作物进行生物强化的“概念验证”研究(如高β-胡萝卜素的“黄金大米”籽粒、高铁蛋白铁的大米籽粒等)。此外,当播种到缺乏微量营养素的土壤中时,种子中微量元素的富集可以提高作物产量,从而确保农民采用这些方法。在采用植物育种和/或转基因方法减少微量营养素营养不良时,必须解决生物可利用性问题。促进微量营养素生物可利用性的增强物质(如抗坏血酸、含硫氨基酸等)或减少抑制微量营养素生物可利用性的抗营养物质(如植酸盐、多酚类等)都是可以采用的选择,但后一种方法应谨慎使用。世界农业界应采用植物育种和其他遗传技术来改善人类健康,世界营养与健康界也应支持这些努力。如果不采用农业方法,就无法找到解决这个巨大的全球“隐性饥饿”问题的可持续办法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验