Suppr超能文献

血脑屏障渗透模型:区分潜在的中枢神经系统药物和非中枢神经系统药物,包括P-糖蛋白底物。

Blood-brain barrier permeation models: discriminating between potential CNS and non-CNS drugs including P-glycoprotein substrates.

作者信息

Adenot Marc, Lahana Roger

机构信息

Synt:em, Parc Scientifique G Besse, 30000 Nimes, France.

出版信息

J Chem Inf Comput Sci. 2004 Jan-Feb;44(1):239-48. doi: 10.1021/ci034205d.

Abstract

The aim of this article is to present the design of a large heterogeneous CNS library (approximately 1700 compounds) from WDI and mapping CNS drugs using QSAR models of blood-brain barrier (BBB) permeation and P-gp substrates. The CNS library finally includes 1336 BBB-crossing drugs (BBB+), 259 molecules non-BBB-crossing (BBB-), and 91 P-gp substrates (either BBB+ or BBB-). Discriminant analysis and PLS-DA have been used to model the passive diffusion component of BBB permeation and potential physicochemical requirement of P-gp substrates. Three categories of explanatory variables (Cdiff, BBBpred, PGPpred) have been suggested to express the level of permeation within a continuous scale, starting from two classes data (BBB+/BBB-), allowing that the degree to which each compound belongs to an activity class is given using a membership score. Finally, statistical data analyses have shown that some very simple descriptors are sufficient to evaluate BBB permeation in most cases, with a high rate of well-classified drugs. Moreover, a "CNS drugs" map, including P-gp substrates and accurately reflecting the in vivo behavior of drugs, is proposed as a tool for CNS drug virtual screening.

摘要

本文旨在展示一个来自WDI的大型异质性中枢神经系统(CNS)文库(约1700种化合物)的设计,并使用血脑屏障(BBB)渗透和P-糖蛋白底物的定量构效关系(QSAR)模型对CNS药物进行映射。该CNS文库最终包含1336种可穿越BBB的药物(BBB+)、259种不可穿越BBB的分子(BBB-)以及91种P-糖蛋白底物(BBB+或BBB-)。判别分析和偏最小二乘判别分析(PLS-DA)已被用于模拟BBB渗透的被动扩散成分以及P-糖蛋白底物的潜在理化要求。已提出三类解释变量(Cdiff、BBBpred、PGPpred),以在连续尺度上表示渗透水平,从两类数据(BBB+/BBB-)开始,使得每种化合物属于活性类别的程度可以使用隶属度分数给出。最后,统计数据分析表明,在大多数情况下,一些非常简单的描述符足以评估BBB渗透,且药物分类良好的比率很高。此外,还提出了一张“CNS药物”图谱,包括P-糖蛋白底物并准确反映药物的体内行为,作为CNS药物虚拟筛选的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验