Majumdar Ananya, Ghose Ranajeet
Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
J Biomol NMR. 2004 Mar;28(3):213-27. doi: 10.1023/B:JNMR.0000013705.98136.99.
The difference in the relaxation rates of zero-quantum (ZQ) and double-quantum (DQ) coherences is the result of three principal mechanisms. These include the cross-correlation between the chemical shift anisotropies of the two participating nuclei, dipolar interactions with remote protons as well as interference effects due to the time-modulation of their isotropic chemical shifts as a consequence of slow micros-ms dynamics. The last effect when present, dominates the others resulting in large differences between the relaxation rates of ZQ and DQ coherences. We present here four sets of TROSY-based (Salzmann et al., 1998) experiments that measure this effect for several pairs of backbone nuclei including (15)N, (13)C(alpha) and (13)C'. These experiments allow the detection of the presence of slow dynamic processes in the protein backbone including correlated motion over two and three bonds. Further, we define a new parameter chi which represents the extent of correlated motion on the slow (micros-ms) timescale. This methodology has been applied to (15)N,(13)C,REDPRO-(2)H-labeled (Shekhtman et al., 2002) human ubiquitin. The ubiquitin backbone is seen to exhibit extensive dynamics on the slow timescale. This is most pronounced in several residues in the N-terminal region of the alpha-helix and in the loop connecting the strands beta(4) and beta(5). These residues which include Glu24, Asn25, Glu51 and Asp 52 form a continuous surface. As an additional benefit, the measured rates confirm the dependence of the (13)C(alpha) chemical shift tensor on local secondary structure of the protein backbone.
零量子(ZQ)和双量子(DQ)相干弛豫速率的差异是由三种主要机制造成的。这些机制包括两个参与原子核的化学位移各向异性之间的交叉相关性、与远程质子的偶极相互作用以及由于慢微秒级动力学导致的各向同性化学位移的时间调制所产生的干涉效应。当存在最后一种效应时,它会主导其他效应,导致ZQ和DQ相干弛豫速率之间存在很大差异。我们在此展示了四组基于TROSY(萨尔兹曼等人,1998年)的实验,这些实验测量了几对主链原子核(包括¹⁵N、¹³Cα和¹³C′)的这种效应。这些实验能够检测蛋白质主链中慢动态过程的存在,包括跨越两个和三个键的相关运动。此外,我们定义了一个新参数χ,它表示慢(微秒 - 毫秒)时间尺度上相关运动的程度。这种方法已应用于¹⁵N、¹³C、REDPRO - ²H标记的(谢赫特曼等人,2002年)人泛素。泛素主链在慢时间尺度上表现出广泛的动力学。这在α - 螺旋N端区域的几个残基以及连接β(4)和β(5)链的环中最为明显。这些残基包括Glu24、Asn25、Glu51和Asp 52,形成了一个连续的表面。另外一个好处是,测量得到的速率证实了¹³Cα化学位移张量对蛋白质主链局部二级结构的依赖性。