Suppr超能文献

Biocompatibility and integrin-mediated adhesion of human osteoblasts to poly(DL-lactide-co-glycolide) copolymers.

作者信息

Di Toro Rosanna, Betti Vittorio, Spampinato Santi

机构信息

Department of Pharmacology, University of Bologna, Irnerio 48, 40126, Bologna, Italy.

出版信息

Eur J Pharm Sci. 2004 Feb;21(2-3):161-9. doi: 10.1016/j.ejps.2003.10.001.

Abstract

The biocompatibility of polylactic acid (PLA) and polyglycolic acid (PGA) copolymers, employed in manufacturing bone-graft substitutes, is affected by their chemical composition, molecular weight and cell environment, and by the methods of polymerization and processing. Their in vitro bioactivity on human osteoblasts has been investigated very little. We first evaluated the behavior of primary human osteoblasts cultured in close contact with 75:25 and 50:50 PLA-PGA copolymers for 14 days adopting a cell culture system that allowed us to evaluate the influence of direct contact, and of factors released from polymers. The copolymers had no negative influence on cell morphology, cell viability and proliferation. Alkaline phosphatase (ALP) activity and osteocalcin production were also not affected. The initial adhesion of osteoblasts on implant surfaces requires the contribution of integrins, acting as a primary mechanism regulating cell-extracellular matrix (ECM) interactions. We observed that adhesion of osteoblasts to PLA-PGA copolymers, 2h after plating, was reduced by approximately 70% by antibodies capable to block integrin beta(1) and alpha(5)beta(1) complex and only by approximately 30% by an anti-integrin alpha(v) antibody. Therefore, beta(1) integrins may represent a predominant adhesion receptor subfamily utilized by osteoblasts to adhere to PLA-PGA copolymers. These materials do not show any negative influence on cell proliferation and differentiation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验