Niu Yi, Fan Duze, Ding Jie, Peng Yingwei
School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, China.
Department of Public Health Sciences, Queen's University, Kingston, ON, Canada.
Stat Methods Med Res. 2025 Jan;34(1):150-169. doi: 10.1177/09622802241295335. Epub 2024 Dec 10.
The semiparametric accelerated failure time mixture cure model is an appealing alternative to the proportional hazards mixture cure model in analyzing failure time data with long-term survivors. However, this model was only proposed for independent survival data and it has not been extended to clustered or correlated survival data, partly due to the complexity of the estimation method for the model. In this paper, we consider a marginal semiparametric accelerated failure time mixture cure model for clustered right-censored failure time data with a potential cure fraction. We overcome the complexity of the existing semiparametric method by proposing a generalized estimating equations approach based on the expectation-maximization algorithm to estimate the regression parameters in the model. The correlation structures within clusters are modeled by working correlation matrices in the proposed generalized estimating equations. The large sample properties of the regression estimators are established. Numerical studies demonstrate that the proposed estimation method is easy to use and robust to the misspecification of working matrices and that higher efficiency is achieved when the working correlation structure is closer to the true correlation structure. We apply the proposed model and estimation method to a contralateral breast cancer study and reveal new insights when the potential correlation between patients is taken into account.
在分析含有长期存活者的失效时间数据时,半参数加速失效时间混合治愈模型是比例风险混合治愈模型的一个有吸引力的替代方法。然而,该模型仅针对独立生存数据提出,尚未扩展到聚类或相关生存数据,部分原因是该模型估计方法的复杂性。在本文中,我们考虑一种用于具有潜在治愈比例的聚类右删失失效时间数据的边际半参数加速失效时间混合治愈模型。我们通过基于期望最大化算法提出一种广义估计方程方法来估计模型中的回归参数,克服了现有半参数方法的复杂性。在所提出的广义估计方程中,聚类内的相关结构通过工作相关矩阵进行建模。建立了回归估计量的大样本性质。数值研究表明,所提出的估计方法易于使用,并且对工作矩阵的误设具有稳健性,当工作相关结构更接近真实相关结构时能实现更高的效率。我们将所提出的模型和估计方法应用于对侧乳腺癌研究,并在考虑患者之间潜在相关性时揭示了新的见解。