Suppr超能文献

来自弗雷明汉心脏研究的纵向血压测量的多重填补方法。

Multiple imputation methods for longitudinal blood pressure measurements from the Framingham Heart Study.

作者信息

Kang Terri, Kraft Peter, Gauderman W James, Thomas Duncan

机构信息

Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA.

出版信息

BMC Genet. 2003 Dec 31;4 Suppl 1(Suppl 1):S43. doi: 10.1186/1471-2156-4-S1-S43.

Abstract

Missing data are a great concern in longitudinal studies, because few subjects will have complete data and missingness could be an indicator of an adverse outcome. Analyses that exclude potentially informative observations due to missing data can be inefficient or biased. To assess the extent of these problems in the context of genetic analyses, we compared case-wise deletion to two multiple imputation methods available in the popular SAS package, the propensity score and regression methods. For both the real and simulated data sets, the propensity score and regression methods produced results similar to case-wise deletion. However, for the simulated data, the estimates of heritability for case-wise deletion and the two multiple imputation methods were much lower than for the complete data. This suggests that if missingness patterns are correlated within families, then imputation methods that do not allow this correlation can yield biased results.

摘要

在纵向研究中,缺失数据是一个令人十分担忧的问题,因为很少有受试者会拥有完整的数据,而且数据缺失可能是不良结局的一个指标。由于缺失数据而排除潜在有用观测值的分析可能效率低下或存在偏差。为了在基因分析背景下评估这些问题的严重程度,我们将逐例删除法与流行的SAS软件包中可用的两种多重填补方法(倾向得分法和回归法)进行了比较。对于真实数据集和模拟数据集,倾向得分法和回归法产生的结果与逐例删除法相似。然而,对于模拟数据,逐例删除法和两种多重填补方法的遗传力估计值远低于完整数据的估计值。这表明,如果家庭内部的数据缺失模式存在相关性,那么不考虑这种相关性的填补方法可能会产生有偏差的结果。

相似文献

2
Imputation methods for missing data for polygenic models.多基因模型中缺失数据的插补方法。
BMC Genet. 2003 Dec 31;4 Suppl 1(Suppl 1):S42. doi: 10.1186/1471-2156-4-S1-S42.

引用本文的文献

本文引用的文献

2
Imputation methods for missing data for polygenic models.多基因模型中缺失数据的插补方法。
BMC Genet. 2003 Dec 31;4 Suppl 1(Suppl 1):S42. doi: 10.1186/1471-2156-4-S1-S42.
6
A multiple imputation strategy for clinical trials with truncation of patient data.
Stat Med. 1995 Sep 15;14(17):1913-25. doi: 10.1002/sim.4780141707.
7
Missing data in longitudinal studies.纵向研究中的缺失数据。
Stat Med. 1988 Jan-Feb;7(1-2):305-15. doi: 10.1002/sim.4780070131.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验