Masip Lluis, Pan Jonathan L, Haldar Suranjana, Penner-Hahn James E, DeLisa Matthew P, Georgiou George, Bardwell James C A, Collet Jean-François
Department of Chemical Engineering and Institute for Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA.
Science. 2004 Feb 20;303(5661):1185-9. doi: 10.1126/science.1092612.
We have engineered a pathway for the formation of disulfide bonds. By imposing evolutionary pressure, we isolated mutations that changed thioredoxin, which is a monomeric disulfide reductase, into a [2Fe-2S] bridged dimer capable of catalyzing O2-dependent sulfhydryl oxidation in vitro. Expression of the mutant protein in Escherichia coli with oxidizing cytoplasm and secretion via the Tat pathway restored disulfide bond formation in strains that lacked the complete periplasmic oxidative machinery (DsbA and DsbB). The evolution of [2Fe-2S] thioredoxin illustrates how mutations within an existing scaffold can add a cofactor and markedly change protein function.
我们设计了一条形成二硫键的途径。通过施加进化压力,我们分离出了一些突变,这些突变将作为单体二硫键还原酶的硫氧还蛋白转变为一种能够在体外催化依赖氧气的巯基氧化的[2Fe-2S]桥连二聚体。将该突变蛋白在具有氧化性细胞质的大肠杆菌中表达,并通过Tat途径分泌,这恢复了缺乏完整周质氧化机制(DsbA和DsbB)的菌株中的二硫键形成。[2Fe-2S]硫氧还蛋白的进化说明了现有支架内的突变如何添加一个辅因子并显著改变蛋白质功能。