Suppr超能文献

基于生物物理约束的电神经成像。

Electrical neuroimaging based on biophysical constraints.

作者信息

Grave de Peralta Menendez Rolando, Murray Micah M, Michel Christoph M, Martuzzi Roberto, Gonzalez Andino Sara L

机构信息

Functional Brain Mapping Laboratory, Neurology Department, University Hospital of Geneva, 1211 Geneva, Switzerland.

出版信息

Neuroimage. 2004 Feb;21(2):527-39. doi: 10.1016/j.neuroimage.2003.09.051.

Abstract

This paper proposes and implements biophysical constraints to select a unique solution to the bioelectromagnetic inverse problem. It first shows that the brain's electric fields and potentials are predominantly due to ohmic currents. This serves to reformulate the inverse problem in terms of a restricted source model permitting noninvasive estimations of Local Field Potentials (LFPs) in depth from scalp-recorded data. Uniqueness in the solution is achieved by a physically derived regularization strategy that imposes a spatial structure on the solution based upon the physical laws that describe electromagnetic fields in biological media. The regularization strategy and the source model emulate the properties of brain activity's actual generators. This added information is independent of both the recorded data and head model and suffices for obtaining a unique solution compatible with and aimed at analyzing experimental data. The inverse solution's features are evaluated with event-related potentials (ERPs) from a healthy subject performing a visuo-motor task. Two aspects are addressed: the concordance between available neurophysiological evidence and inverse solution results, and the functional localization provided by fMRI data from the same subject under identical experimental conditions. The localization results are spatially and temporally concordant with experimental evidence, and the areas detected as functionally activated in both imaging modalities are similar, providing indices of localization accuracy. We conclude that biophysically driven inverse solutions offer a novel and reliable possibility for studying brain function with the temporal resolution required to advance our understanding of the brain's functional networks.

摘要

本文提出并实现了生物物理约束条件,以选择生物电磁逆问题的唯一解。首先表明,大脑的电场和电位主要是由欧姆电流引起的。这有助于根据受限源模型重新表述逆问题,从而能够从头皮记录数据中对深部局部场电位(LFP)进行非侵入性估计。通过基于描述生物介质中电磁场的物理定律对解施加空间结构的物理推导正则化策略,实现了解的唯一性。正则化策略和源模型模拟了大脑活动实际发生器的特性。此附加信息独立于记录数据和头部模型,足以获得与实验数据兼容并旨在分析实验数据的唯一解。使用来自执行视觉运动任务的健康受试者的事件相关电位(ERP)评估逆解的特征。探讨了两个方面:现有神经生理学证据与逆解结果之间的一致性,以及在相同实验条件下来自同一受试者的功能磁共振成像(fMRI)数据提供的功能定位。定位结果在空间和时间上与实验证据一致,并且在两种成像模态中检测到的功能激活区域相似,提供了定位准确性指标。我们得出结论,生物物理驱动的逆解为研究大脑功能提供了一种新颖且可靠的可能性,具有推进我们对大脑功能网络理解所需的时间分辨率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验