Suppr超能文献

应用线性混合模型估计具有重复测量的临床试验数据的可靠性。

Applying linear mixed models to estimate reliability in clinical trial data with repeated measurements.

作者信息

Vangeneugden Tony, Laenen Annouschka, Geys Helena, Renard Didier, Molenberghs Geert

机构信息

Johnson & Johnson Pharmaceutical Research and Development, Beerse, Belgium.

出版信息

Control Clin Trials. 2004 Feb;25(1):13-30. doi: 10.1016/j.cct.2003.08.009.

Abstract

Repeated measures are exploited to study reliability in the context of psychiatric health sciences. It is shown how test-retest reliability can be derived using linear mixed models when the scale is continuous or quasi-continuous. The advantage of this approach is that the full modeling power of mixed models can be used. Repeated measures with a different mean structure can be used to usefully study reliability, correction for covariate effects is possible, and a complicated variance-covariance structure between measurements is allowed. In case the variance structure reduces to a random intercept (compound symmetry), classical methods are recovered. With more complex variance structures (e.g., including random slopes of time and/or serial correlation), time-dependent reliability functions are obtained. The methodology is motivated by and applied to data from five double-blind randomized clinical trials comparing the effects of risperidone to conventional antipsychotic agents for the treatment of chronic schizophrenia. Model assumptions are investigated through residual plots and by investigating the effect of influential observations.

摘要

在精神卫生科学领域,重复测量被用于研究可靠性。本文展示了在量表为连续或准连续时,如何使用线性混合模型推导重测信度。这种方法的优点在于可以充分利用混合模型的建模能力。具有不同均值结构的重复测量可用于有效研究可靠性,能够对协变量效应进行校正,并且允许测量之间存在复杂的方差协方差结构。当方差结构简化为随机截距(复合对称性)时,可恢复经典方法。对于更复杂的方差结构(例如,包括时间的随机斜率和/或序列相关性),可获得随时间变化的可靠性函数。该方法的灵感来源于五项双盲随机临床试验的数据,并应用于这些数据,这些试验比较了利培酮与传统抗精神病药物治疗慢性精神分裂症的效果。通过残差图和研究有影响观测值的效应来研究模型假设。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验