Suppr超能文献

广义线性混合模型中错误指定的随机效应分布对估计和推断程序性能的影响。

The impact of a misspecified random-effects distribution on the estimation and the performance of inferential procedures in generalized linear mixed models.

作者信息

Litière S, Alonso A, Molenberghs G

机构信息

Center for Statistics, Hasselt University, Agoralaan Gebouw D, BE-3590 Diepenbeek, Belgium.

出版信息

Stat Med. 2008 Jul 20;27(16):3125-44. doi: 10.1002/sim.3157.

Abstract

Estimation in generalized linear mixed models (GLMMs) is often based on maximum likelihood theory, assuming that the underlying probability model is correctly specified. However, the validity of this assumption is sometimes difficult to verify. In this paper we study, through simulations, the impact of misspecifying the random-effects distribution on the estimation and hypothesis testing in GLMMs. It is shown that the maximum likelihood estimators are inconsistent in the presence of misspecification. The bias induced in the mean-structure parameters is generally small, as far as the variability of the underlying random-effects distribution is small as well. However, the estimates of this variability are always severely biased. Given that the variance components are the only tool to study the variability of the true distribution, it is difficult to assess whether problems in the estimation of the mean structure occur. The type I error rate and the power of the commonly used inferential procedures are also severely affected. The situation is aggravated if more than one random effect is included in the model. Further, we propose to deal with possible misspecification by way of sensitivity analysis, considering several random-effects distributions. All the results are illustrated using data from a clinical trial in schizophrenia.

摘要

广义线性混合模型(GLMMs)中的估计通常基于最大似然理论,假定潜在概率模型已正确设定。然而,这一假设的有效性有时难以验证。在本文中,我们通过模拟研究了错误设定随机效应分布对GLMMs中估计和假设检验的影响。结果表明,在存在错误设定的情况下,最大似然估计量是不一致的。只要潜在随机效应分布的变异性较小,均值结构参数中产生的偏差通常也较小。然而,这种变异性的估计总是存在严重偏差。鉴于方差分量是研究真实分布变异性的唯一工具,很难评估均值结构估计中是否存在问题。常用推断程序的I型错误率和检验功效也受到严重影响。如果模型中包含多个随机效应,情况会更加严重。此外,我们建议通过敏感性分析来处理可能的错误设定,考虑几种随机效应分布。所有结果均使用来自一项精神分裂症临床试验的数据进行说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验