Suppr超能文献

[人工神经网络。在麻醉、重症监护和急诊医学中的理论与应用]

[Artificial neural networks. Theory and applications in anesthesia, intensive care and emergency medicine].

作者信息

Traeger M, Eberhart A, Geldner G, Morin A M, Putzke C, Wulf H, Eberhart L H

机构信息

Klinik für Innere Medizin, Kreiskrankenhaus Günzburg.

出版信息

Anaesthesist. 2003 Nov;52(11):1055-61. doi: 10.1007/s00101-003-0576-x.

Abstract

Artificial neural networks (ANN) are constructed to simulate processes of the central nervous system of higher creatures. An ANN consists of a set of processing units (nodes) which simulate neurons and are interconnected via a set of "weights" (analogous to synaptic connections in the nervous system) in a way which allows signals to travel through the network in parallel. The nodes (neurons) are simple computing elements. They accumulate input from other neurons by means of a weighted sum. If a certain threshold is reached the neuron sends information to all other connected neurons otherwise it remains quiescent. One major difference compared with traditional statistical or rule-based systems is the learning aptitude of an ANN. At the very beginning of a training process an ANN contains no explicit information. Then a large number of cases with a known outcome are presented to the system and the weights of the inter-neuronal connections are changed by a training algorithm designed to minimise the total error of the system. A trained network has extracted rules that are represented by the matrix of the weights between the neurons. This feature is called generalisation and allows the ANN to predict cases that have never been presented to the system before. Artificial neural networks have shown to be useful predicting various events. Especially complex, non-linear, and time depending relationships can be modelled and forecasted. Furthermore an ANN can be used when the influencing variables on a certain event are not exactly known as it is the case in financial or weather forecasts. This article aims to give a short overview on the function of ANN and their previous use and possible future applications in anaesthesia, intensive care, and emergency medicine.

摘要

人工神经网络(ANN)旨在模拟高等生物中枢神经系统的过程。人工神经网络由一组处理单元(节点)组成,这些节点模拟神经元,并通过一组“权重”(类似于神经系统中的突触连接)相互连接,使得信号能够在网络中并行传播。节点(神经元)是简单的计算元件。它们通过加权求和来累积来自其他神经元的输入。如果达到某个阈值,神经元就会向所有其他相连的神经元发送信息,否则它将保持静止。与传统的统计或基于规则的系统相比,人工神经网络的一个主要区别在于其学习能力。在训练过程开始时,人工神经网络不包含明确的信息。然后,将大量已知结果的案例呈现给系统,神经元之间连接的权重会通过一种训练算法进行改变,该算法旨在使系统的总误差最小化。经过训练的网络提取了由神经元之间权重矩阵表示的规则。这一特性称为泛化,它使人工神经网络能够预测以前从未呈现给系统的案例。人工神经网络已被证明在预测各种事件方面很有用。特别是复杂的、非线性的和随时间变化的关系都可以被建模和预测。此外,当某个事件的影响变量不完全清楚时,比如在金融或天气预报中,就可以使用人工神经网络。本文旨在简要概述人工神经网络的功能及其在麻醉、重症监护和急诊医学中的以往应用及可能的未来应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验