Suppr超能文献

大肠杆菌尿苷磷酸化酶两种天然形式和三种复合形式的晶体结构揭示了底物特异性、诱导构象变化及钾离子影响的基础。

Crystal structures of Escherichia coli uridine phosphorylase in two native and three complexed forms reveal basis of substrate specificity, induced conformational changes and influence of potassium.

作者信息

Caradoc-Davies Tom T, Cutfield Sue M, Lamont Iain L, Cutfield John F

机构信息

Department of Biochemistry, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin 9001, New Zealand.

出版信息

J Mol Biol. 2004 Mar 19;337(2):337-54. doi: 10.1016/j.jmb.2004.01.039.

Abstract

Uridine phosphorylase (UP) is a key enzyme in the pyrimidine salvage pathway that catalyses the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate. Inhibiting liver UP in humans raises blood uridine levels and produces a protective effect ("uridine rescue") against the toxicity of the chemotherapeutic agent 5-fluorouracil without reducing its antitumour activity. We have investigated UP-substrate interactions by determining the crystal structures of native Escherichia coli UP (two forms), and complexes with 5-fluorouracil/ribose 1-phosphate, 2-deoxyuridine/phosphate and thymidine/phosphate. These hexameric structures confirm the overall structural similarity of UP to E.coli purine nucleoside phosphorylase (PNP) whereby, in the presence of substrate, each displays a closed conformation resulting from a concerted movement that closes the active site cleft. However, in contrast to PNP where helix segmentation is the major conformational change between the open and closed forms, in UP more extensive changes are observed. In particular a swinging movement of a flap region consisting of residues 224-234 seals the active site. This overall change in conformation results in compression of the active site cleft. Gln166 and Arg168, part of an inserted segment not seen in PNP, are key residues in the uracil binding pocket and together with a tightly bound water molecule are seen to be involved in the substrate specificity of UP. Enzyme activity shows a twofold dependence on potassium ion concentration. The presence of a potassium ion at the monomer/monomer interface induces some local rearrangement, which results in dimer stabilisation. The conservation of key residues and interactions with substrate in the phosphate and ribose binding pockets suggest that ribooxocarbenium ion formation during catalysis of UP may be similar to that proposed for E.coli PNP.

摘要

尿苷磷酸化酶(UP)是嘧啶补救途径中的关键酶,催化尿苷可逆地磷酸解为尿嘧啶和核糖1-磷酸。抑制人体肝脏中的UP可提高血液中尿苷水平,并对化疗药物5-氟尿嘧啶的毒性产生保护作用(“尿苷挽救”),同时不降低其抗肿瘤活性。我们通过测定天然大肠杆菌UP(两种形式)以及与5-氟尿嘧啶/核糖1-磷酸、2-脱氧尿苷/磷酸和胸苷/磷酸形成的复合物的晶体结构,研究了UP与底物的相互作用。这些六聚体结构证实了UP与大肠杆菌嘌呤核苷磷酸化酶(PNP)在整体结构上的相似性,即在底物存在的情况下,二者均呈现出由协同运动导致活性位点裂隙关闭而形成的封闭构象。然而,与PNP不同,PNP中螺旋分割是开放和封闭形式之间的主要构象变化,而在UP中观察到的构象变化更为广泛。特别是由224-234位残基组成的一个侧翼区域的摆动运动封闭了活性位点。这种整体构象变化导致活性位点裂隙压缩。Gln166和Arg168是PNP中未见的插入片段的一部分,是尿嘧啶结合口袋中的关键残基,与一个紧密结合的水分子一起参与了UP的底物特异性识别。酶活性对钾离子浓度呈现双重依赖性。单体/单体界面处钾离子的存在会引起一些局部重排,从而导致二聚体稳定。磷酸盐和核糖结合口袋中关键残基的保守性以及与底物的相互作用表明,UP催化过程中核糖氧碳鎓离子的形成可能与大肠杆菌PNP的情况类似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验