Suppr超能文献

循环神经回路中的贝叶斯计算

Bayesian computation in recurrent neural circuits.

作者信息

Rao Rajesh P N

机构信息

Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA.

出版信息

Neural Comput. 2004 Jan;16(1):1-38. doi: 10.1162/08997660460733976.

Abstract

A large number of human psychophysical results have been successfully explained in recent years using Bayesian models. However, the neural implementation of such models remains largely unclear. In this article, we show that a network architecture commonly used to model the cerebral cortex can implement Bayesian inference for an arbitrary hidden Markov model. We illustrate the approach using an orientation discrimination task and a visual motion detection task. In the case of orientation discrimination, we show that the model network can infer the posterior distribution over orientations and correctly estimate stimulus orientation in the presence of significant noise. In the case of motion detection, we show that the resulting model network exhibits direction selectivity and correctly computes the posterior probabilities over motion direction and position. When used to solve the well-known random dots motion discrimination task, the model generates responses that mimic the activities of evidence-accumulating neurons in cortical areas LIP and FEF. The framework we introduce posits a new interpretation of cortical activities in terms of log posterior probabilities of stimuli occurring in the natural world.

摘要

近年来,大量人类心理物理学研究结果已通过贝叶斯模型得到成功解释。然而,此类模型的神经实现方式在很大程度上仍不明确。在本文中,我们表明一种常用于模拟大脑皮层的网络架构能够对任意隐马尔可夫模型执行贝叶斯推理。我们通过方向辨别任务和视觉运动检测任务对该方法进行说明。在方向辨别方面,我们表明模型网络能够推断方向上的后验分布,并在存在大量噪声的情况下正确估计刺激方向。在运动检测方面,我们表明所得模型网络表现出方向选择性,并能正确计算运动方向和位置上的后验概率。当用于解决著名的随机点运动辨别任务时,该模型产生的反应可模拟皮层区域LIP和FEF中证据积累神经元的活动。我们引入的框架对皮层活动提出了一种基于自然世界中刺激发生的对数后验概率的新解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验