Suppr超能文献

竞争和反复交互作用下的突显:连接视觉注意中的神经尖峰和计算。

Salience by competitive and recurrent interactions: Bridging neural spiking and computation in visual attention.

机构信息

Department of Psychology.

School of Psychological Sciences.

出版信息

Psychol Rev. 2022 Oct;129(5):1144-1182. doi: 10.1037/rev0000366. Epub 2022 Apr 7.

Abstract

Decisions about where to move the eyes depend on neurons in frontal eye field (FEF). Movement neurons in FEF accumulate salience evidence derived from FEF visual neurons to select the location of a saccade target among distractors. How visual neurons achieve this salience representation is unknown. We present a neuro-computational model of target selection called salience by competitive and recurrent interactions (SCRI), based on the competitive interaction model of attentional selection and decision-making (Smith & Sewell, 2013). SCRI selects targets by synthesizing localization and identification information to yield a dynamically evolving representation of salience across the visual field. SCRI accounts for neural spiking of individual FEF visual neurons, explaining idiosyncratic differences in neural dynamics with specific parameters. Many visual neurons resolve the competition between search items through feedforward inhibition between signals representing different search items, some also require lateral inhibition, and many act as recurrent gates to modulate the incoming flow of information about stimulus identity. SCRI was tested further by using simulated spiking representations of visual salience as input to the gated accumulator model of FEF movement neurons (Purcell et al., 2010, 2012). Predicted saccade response times fit those observed for search arrays of different set sizes and different target-distractor similarities, and accumulator trajectories replicated movement neuron discharge rates. These findings offer new insights into visual decision-making through converging neuro-computational constraints and provide a novel computational account of the diversity of FEF visual neurons. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

摘要

眼球运动的决策取决于额眼区(FEF)中的神经元。FEF 中的运动神经元积累来自 FEF 视觉神经元的显著证据,以在干扰物中选择扫视目标的位置。视觉神经元如何实现这种显著表示尚不清楚。我们提出了一种称为竞争和递归相互作用的突显目标选择的神经计算模型(SCRI),该模型基于注意力选择和决策的竞争相互作用模型(Smith 和 Sewell,2013)。SCRI 通过综合定位和识别信息来选择目标,从而在整个视野中产生突显的动态演变表示。SCRI 解释了特定参数下神经动力学的独特差异,解释了单个 FEF 视觉神经元的神经尖峰。许多视觉神经元通过代表不同搜索项的信号之间的前馈抑制来解决搜索项之间的竞争,有些还需要侧向抑制,许多则作为递归门来调节关于刺激身份的信息流的传入。通过将视觉显著的模拟尖峰表示作为 FEF 运动神经元门控累积器模型的输入,进一步测试了 SCRI(Purcell 等人,2010 年,2012 年)。预测的扫视反应时间与不同集合大小和不同目标-干扰物相似性的搜索阵列的观察结果相匹配,并且累积器轨迹复制了运动神经元的放电率。这些发现通过收敛的神经计算约束提供了对视觉决策的新见解,并为 FEF 视觉神经元的多样性提供了一种新的计算解释。(PsycInfo 数据库记录(c)2022 APA,保留所有权利)。

相似文献

1
Salience by competitive and recurrent interactions: Bridging neural spiking and computation in visual attention.
Psychol Rev. 2022 Oct;129(5):1144-1182. doi: 10.1037/rev0000366. Epub 2022 Apr 7.
2
Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience.
J Neurophysiol. 2005 Jan;93(1):337-51. doi: 10.1152/jn.00330.2004. Epub 2004 Aug 18.
5
Difficulty of visual search modulates neuronal interactions and response variability in the frontal eye field.
J Neurophysiol. 2007 Nov;98(5):2580-7. doi: 10.1152/jn.00522.2007. Epub 2007 Sep 12.
6
Frontal eye field stimulation modulates the balance of salience between target and distractors.
Brain Res. 2009 May 13;1270:54-63. doi: 10.1016/j.brainres.2009.02.081. Epub 2009 Mar 12.
7
From salience to saccades: multiple-alternative gated stochastic accumulator model of visual search.
J Neurosci. 2012 Mar 7;32(10):3433-46. doi: 10.1523/JNEUROSCI.4622-11.2012.
9
Neurally constrained modeling of speed-accuracy tradeoff during visual search: gated accumulation of modulated evidence.
J Neurophysiol. 2019 Apr 1;121(4):1300-1314. doi: 10.1152/jn.00507.2018. Epub 2019 Feb 6.
10
Neural mechanisms of saccade target selection: gated accumulator model of the visual-motor cascade.
Eur J Neurosci. 2011 Jun;33(11):1991-2002. doi: 10.1111/j.1460-9568.2011.07715.x.

引用本文的文献

1
Vision of objects happens faster and earlier for location than for identity.
iScience. 2024 Dec 27;28(2):111702. doi: 10.1016/j.isci.2024.111702. eCollection 2025 Feb 21.
2
Relating a Spiking Neural Network Model and the Diffusion Model of Decision-Making.
Comput Brain Behav. 2022 Sep;5(3):279-301. doi: 10.1007/s42113-022-00143-4. Epub 2022 Jun 13.

本文引用的文献

1
Guided Search 6.0: An updated model of visual search.
Psychon Bull Rev. 2021 Aug;28(4):1060-1092. doi: 10.3758/s13423-020-01859-9. Epub 2021 Feb 5.
6
Similarity leads to correlated processing: A dynamic model of encoding and recognition of episodic associations.
Psychol Rev. 2020 Oct;127(5):792-828. doi: 10.1037/rev0000195. Epub 2020 Mar 19.
7
The role of prefrontal cortex in the control of feature attention in area V4.
Nat Commun. 2019 Dec 16;10(1):5727. doi: 10.1038/s41467-019-13761-7.
8
Approaches to Analysis in Model-based Cognitive Neuroscience.
J Math Psychol. 2017 Feb;76(B):65-79. doi: 10.1016/j.jmp.2016.01.001. Epub 2016 Feb 17.
9
Accumulators, Neurons, and Response Time.
Trends Neurosci. 2019 Dec;42(12):848-860. doi: 10.1016/j.tins.2019.10.001. Epub 2019 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验