Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.
Nat Hum Behav. 2022 Aug;6(8):1153-1168. doi: 10.1038/s41562-022-01357-z. Epub 2022 May 30.
We must often infer latent properties of the world from noisy and changing observations. Complex, probabilistic approaches to this challenge such as Bayesian inference are accurate but cognitively demanding, relying on extensive working memory and adaptive processing. Simple heuristics are easy to implement but may be less accurate. What is the appropriate balance between complexity and accuracy? Here we model a hierarchy of strategies of variable complexity and find a power law of diminishing returns: increasing complexity gives progressively smaller gains in accuracy. The rate of diminishing returns depends systematically on the statistical uncertainty in the world, such that complex strategies do not provide substantial benefits over simple ones when uncertainty is either too high or too low. In between, there is a complexity dividend. In two psychophysical experiments, we confirm specific model predictions about how working memory and adaptivity should be modulated by uncertainty.
我们常常需要根据嘈杂且不断变化的观测结果来推断世界的潜在属性。贝叶斯推理等复杂的概率方法虽然准确,但认知要求较高,需要依赖大量的工作记忆和自适应处理。简单的启发式方法易于实现,但可能不够准确。那么,在复杂性和准确性之间应该如何平衡呢?在本文中,我们构建了一个可变复杂度策略的层次模型,并发现了收益递减的幂律关系:增加复杂度会使准确性的提高逐渐减少。收益递减的速度与世界的统计不确定性系统相关,因此当不确定性过高或过低时,复杂策略相对于简单策略并没有带来实质性的优势。在这两者之间,存在一个复杂性红利。在两项心理物理学实验中,我们证实了关于工作记忆和适应性应如何根据不确定性进行调节的具体模型预测。