Suppr超能文献

人类的推理反映了一种复杂性和准确性的规范性平衡。

Human inference reflects a normative balance of complexity and accuracy.

机构信息

Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.

Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Nat Hum Behav. 2022 Aug;6(8):1153-1168. doi: 10.1038/s41562-022-01357-z. Epub 2022 May 30.

Abstract

We must often infer latent properties of the world from noisy and changing observations. Complex, probabilistic approaches to this challenge such as Bayesian inference are accurate but cognitively demanding, relying on extensive working memory and adaptive processing. Simple heuristics are easy to implement but may be less accurate. What is the appropriate balance between complexity and accuracy? Here we model a hierarchy of strategies of variable complexity and find a power law of diminishing returns: increasing complexity gives progressively smaller gains in accuracy. The rate of diminishing returns depends systematically on the statistical uncertainty in the world, such that complex strategies do not provide substantial benefits over simple ones when uncertainty is either too high or too low. In between, there is a complexity dividend. In two psychophysical experiments, we confirm specific model predictions about how working memory and adaptivity should be modulated by uncertainty.

摘要

我们常常需要根据嘈杂且不断变化的观测结果来推断世界的潜在属性。贝叶斯推理等复杂的概率方法虽然准确,但认知要求较高,需要依赖大量的工作记忆和自适应处理。简单的启发式方法易于实现,但可能不够准确。那么,在复杂性和准确性之间应该如何平衡呢?在本文中,我们构建了一个可变复杂度策略的层次模型,并发现了收益递减的幂律关系:增加复杂度会使准确性的提高逐渐减少。收益递减的速度与世界的统计不确定性系统相关,因此当不确定性过高或过低时,复杂策略相对于简单策略并没有带来实质性的优势。在这两者之间,存在一个复杂性红利。在两项心理物理学实验中,我们证实了关于工作记忆和适应性应如何根据不确定性进行调节的具体模型预测。

相似文献

2
Hierarchical inference as a source of human biases.作为人类偏见来源的分层推理。
Cogn Affect Behav Neurosci. 2023 Jun;23(3):476-490. doi: 10.3758/s13415-022-01020-0. Epub 2022 Jun 21.
3
Heuristics as Bayesian inference under extreme priors.极端先验下作为贝叶斯推理的启发式方法。
Cogn Psychol. 2018 May;102:127-144. doi: 10.1016/j.cogpsych.2017.11.006. Epub 2018 Mar 6.
5
How do narratives relate to heuristics?叙事与启发法有怎样的关系?
Behav Brain Sci. 2023 May 8;46:e94. doi: 10.1017/S0140525X22002710.
6
The Sense of Confidence during Probabilistic Learning: A Normative Account.概率学习过程中的信心感:一种规范性解释。
PLoS Comput Biol. 2015 Jun 15;11(6):e1004305. doi: 10.1371/journal.pcbi.1004305. eCollection 2015 Jun.
8
Bayesian hypothesis testing and experimental design for two-photon imaging data.双光子成像数据的贝叶斯假设检验与实验设计。
PLoS Comput Biol. 2019 Aug 2;15(8):e1007205. doi: 10.1371/journal.pcbi.1007205. eCollection 2019 Aug.

引用本文的文献

3
Understanding learning through uncertainty and bias.通过不确定性和偏差来理解学习。
Commun Psychol. 2025 Feb 13;3(1):24. doi: 10.1038/s44271-025-00203-y.
5
Understanding dual process cognition via the minimum description length principle.通过最小描述长度原理理解双过程认知。
PLoS Comput Biol. 2024 Oct 18;20(10):e1012383. doi: 10.1371/journal.pcbi.1012383. eCollection 2024 Oct.
10
How Occam's razor guides human decision-making.奥卡姆剃刀如何指导人类决策。
bioRxiv. 2025 Mar 16:2023.01.10.523479. doi: 10.1101/2023.01.10.523479.

本文引用的文献

1
Pupil Size as a Window on Neural Substrates of Cognition.瞳孔大小作为认知神经基质的窗口。
Trends Cogn Sci. 2020 Jun;24(6):466-480. doi: 10.1016/j.tics.2020.03.005. Epub 2020 Apr 21.
5
Distinct timescales of population coding across cortex.整个皮层中群体编码的不同时间尺度。
Nature. 2017 Aug 3;548(7665):92-96. doi: 10.1038/nature23020. Epub 2017 Jul 19.
7
Toward a Rational and Mechanistic Account of Mental Effort.迈向对心理努力的理性与机械论解释
Annu Rev Neurosci. 2017 Jul 25;40:99-124. doi: 10.1146/annurev-neuro-072116-031526. Epub 2017 Mar 31.
10
Uncertainty in perception and the Hierarchical Gaussian Filter.感知中的不确定性与分层高斯滤波器
Front Hum Neurosci. 2014 Nov 19;8:825. doi: 10.3389/fnhum.2014.00825. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验