Suppr超能文献

用于形状识别的神经网络中的动态绑定。

Dynamic binding in a neural network for shape recognition.

作者信息

Hummel J E, Biederman I

机构信息

University of Minnesota, Twin Cities.

出版信息

Psychol Rev. 1992 Jul;99(3):480-517. doi: 10.1037/0033-295x.99.3.480.

Abstract

Given a single view of an object, humans can readily recognize that object from other views that preserve the parts in the original view. Empirical evidence suggests that this capacity reflects the activation of a viewpoint-invariant structural description specifying the object's parts and the relations among them. This article presents a neural network that generates such a description. Structural description is made possible through a solution to the dynamic binding problem: Temporary conjunctions of attributes (parts and relations) are represented by synchronized oscillatory activity among independent units representing those attributes. Specifically, the model uses synchrony (a) to parse images into their constituent parts, (b) to bind together the attributes of a part, and (c) to bind the relations to the parts to which they apply. Because it conjoins independent units temporarily, dynamic binding allows tremendous economy of representation and permits the representation to reflect the attribute structure of the shapes represented.

摘要

给定一个物体的单一视图,人类能够很容易地从保留原始视图中各部分的其他视图中识别出该物体。经验证据表明,这种能力反映了一种视角不变的结构描述的激活,该描述指定了物体的各部分及其之间的关系。本文提出了一种生成这种描述的神经网络。通过解决动态绑定问题实现结构描述:属性(部分和关系)的临时结合由代表这些属性的独立单元之间的同步振荡活动来表示。具体来说,该模型使用同步(a)将图像解析为其组成部分,(b)将一个部分的属性绑定在一起,以及(c)将关系绑定到它们所适用的部分。由于它临时连接独立单元,动态绑定允许极大的表示经济性,并允许表示反映所表示形状的属性结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验