Hall Daniel B, Clutter Michael
Department of Statistics, University of Georgia, Athens, Georgia 30602-1952, USA.
Biometrics. 2004 Mar;60(1):16-24. doi: 10.1111/j.0006-341X.2004.00163.x.
Nonlinear mixed effects models have become important tools for growth and yield modeling in forestry. To date, applications have concentrated on modeling single growth variables such as tree height or bole volume. Here, we propose multivariate multilevel nonlinear mixed effects models for describing several plot-level timber quantity characteristics simultaneously. We describe how such models can be used to produce future predictions of timber volume (yield). The class of models and methods of estimation and prediction are developed and then illustrated on data from a University of Georgia study of the effects of various site preparation methods on the growth of slash pine (Pinus elliottii Engelm.).
非线性混合效应模型已成为林业生长和产量建模的重要工具。迄今为止,应用主要集中在对单一生长变量进行建模,如树高或树干材积。在此,我们提出多元多层次非线性混合效应模型,以同时描述几个样地水平的木材数量特征。我们描述了如何使用此类模型来生成木材体积(产量)的未来预测。开发了该模型类别以及估计和预测方法,然后以佐治亚大学关于各种整地方法对湿地松(Pinus elliottii Engelm.)生长影响的研究数据为例进行说明。