Gerstein Mark, Echols Nathaniel
Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Ave, New Haven, CT 06520, USA.
Curr Opin Chem Biol. 2004 Feb;8(1):14-9. doi: 10.1016/j.cbpa.2003.12.006.
Changes in protein conformation play a vital role in biochemical processes, from biopolymer synthesis to membrane transport. Initial systematizations of protein flexibility, in a database framework, concentrated on the movement of domains and linkers. Movements were described in terms of simple sliding and hinging mechanisms of individual secondary structural elements. Recently, the accelerated pace and sophistication of methods for structural characterization of proteins has allowed high-resolution studies of increasingly complex assemblies and conformational changes. New data emphasize a breadth of possible structural mechanisms, particularly the ability to drastically alter protein architecture and the native flexibility of many structures.
蛋白质构象的变化在从生物聚合物合成到膜运输等生化过程中起着至关重要的作用。在数据库框架内,对蛋白质灵活性的初步系统化研究集中在结构域和连接子的运动上。这些运动是根据单个二级结构元件的简单滑动和铰链机制来描述的。最近,蛋白质结构表征方法的加速发展和复杂性提高,使得对日益复杂的组装体和构象变化能够进行高分辨率研究。新数据强调了可能的结构机制的广度,特别是大幅改变蛋白质结构和许多结构天然灵活性的能力。