Shiuchi Tetsuya, Iwai Masaru, Li Huan-Sheng, Wu Lan, Min Li-Juan, Li Jian-Mei, Okumura Midori, Cui Tai-Xing, Horiuchi Masatsugu
Department of Medical Biochemistry, Ehime University School of Medicine, Shigenobu, Onsen-gun, Japan.
Hypertension. 2004 May;43(5):1003-10. doi: 10.1161/01.HYP.0000125142.41703.64. Epub 2004 Mar 22.
Angiotensin II has been shown to contribute to the pathogenesis of insulin resistance; however, the mechanism is not well understood. The present study was undertaken to investigate the potential effect of an angiotensin II type-1 (AT1) receptor blocker, valsartan, to improve insulin resistance and to explore the signaling basis of cross-talk of the AT1 receptor- and insulin-mediated signaling in type 2 diabetic KK-Ay mice. Treatment of KK-Ay mice with valsartan at a dose of 1 mg/kg per day, which did not influence systolic blood pressure, significantly increased insulin-mediated 2-[3H]deoxy-d-glucose (2-[3H]DG) uptake into skeletal muscle and attenuated the increase in plasma glucose concentration after a glucose load and plasma concentrations of glucose and insulin. In contrast, insulin-mediated 2-[3H]DG uptake into skeletal muscle was not influenced in AT2 receptor null mice, and an AT2 receptor blocker, PD123319, did not affect 2-[3H]DG uptake and superoxide production in skeletal muscle of KK-Ay mice. Moreover, we observed that valsartan treatment exaggerated the insulin-induced phosphorylation of IRS-1, the association of IRS-1 with the p85 regulatory subunit of phosphoinositide 3 kinase (PI 3-K), PI 3-K activity, and translocation of GLUT4 to the plasma membrane. It also reduced tumor necrosis factor-alpha (TNF-alpha) expression and superoxide production in skeletal muscle of KK-Ay mice. Specific AT1 receptor blockade increases insulin sensitivity and glucose uptake in skeletal muscle of KK-Ay mice via stimulating the insulin signaling cascade and consequent enhancement of GLUT4 translocation to the plasma membrane.
血管紧张素II已被证明与胰岛素抵抗的发病机制有关;然而,其机制尚未完全明确。本研究旨在探讨血管紧张素II 1型(AT1)受体阻滞剂缬沙坦改善胰岛素抵抗的潜在作用,并探索2型糖尿病KK-Ay小鼠中AT1受体和胰岛素介导信号之间相互作用的信号基础。以每天1 mg/kg的剂量用缬沙坦治疗KK-Ay小鼠,该剂量不影响收缩压,可显著增加胰岛素介导的2-[3H]脱氧-D-葡萄糖(2-[3H]DG)摄取到骨骼肌中,并减轻葡萄糖负荷后血浆葡萄糖浓度以及血浆葡萄糖和胰岛素浓度的升高。相比之下,胰岛素介导的2-[3H]DG摄取到骨骼肌中的情况在AT2受体基因敲除小鼠中不受影响,并且AT2受体阻滞剂PD123319对KK-Ay小鼠骨骼肌中的2-[3H]DG摄取和超氧化物生成没有影响。此外,我们观察到缬沙坦治疗会夸大胰岛素诱导的IRS-1磷酸化、IRS-1与磷脂酰肌醇3激酶(PI 3-K)的p85调节亚基的结合、PI 3-K活性以及GLUT4向质膜的转位。它还降低了KK-Ay小鼠骨骼肌中肿瘤坏死因子-α(TNF-α)的表达和超氧化物生成。特异性AT1受体阻断通过刺激胰岛素信号级联反应并随之增强GLUT4向质膜的转位,增加了KK-Ay小鼠骨骼肌中的胰岛素敏感性和葡萄糖摄取。