Peterman Mark C, Noolandi Jaan, Blumenkranz Mark S, Fishman Harvey A
Department of Applied Physics, Stanford University, Stanford, CA 94305-4090, USA.
Anal Chem. 2004 Apr 1;76(7):1850-6. doi: 10.1021/ac035154m.
Electroosmotically driven flow in neurotransmitter-based retinal prostheses offers a novel approach to interfacing the nervous system. Here, we show that electroosmotically driven flow in a microfluidic channel can be used either to eject or to withdraw fluid through a small aperture in the channel wall. We study this fluid movement numerically using a finite-element method and experimentally using microfabricated channels and apertures. Two devices are used to test the concept of fluid ejection and withdrawal: (1) a single, large channel with four apertures and (2) a prototype neural interface with four individually addressable apertures. We compared experimental and numerical results in microchannels using the observed pH dependence of the fluorescent dye fluorescein, finding good agreement between the results. Because of the simplicity and rapid response of electroosmotic flow, this technique may be useful for neurotransmitter-based neural interfaces.
基于神经递质的视网膜假体中的电渗驱动流为连接神经系统提供了一种新方法。在此,我们表明微流控通道中的电渗驱动流可用于通过通道壁上的小孔喷射或抽取流体。我们使用有限元方法对这种流体运动进行了数值研究,并使用微加工通道和小孔进行了实验研究。使用两种装置来测试流体喷射和抽取的概念:(1)一个带有四个小孔的单个大通道,以及(2)一个带有四个可单独寻址小孔的原型神经接口。我们利用观察到的荧光染料荧光素的pH依赖性,比较了微通道中的实验结果和数值结果,发现两者结果吻合良好。由于电渗流的简单性和快速响应,该技术可能对基于神经递质的神经接口有用。