Peterman Mark C, Noolandi Jaan, Blumenkranz Mark S, Fishman Harvey A
Department of Applied Physics, Stanford University, CA 94305-4090, USA.
Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):9951-4. doi: 10.1073/pnas.0402089101. Epub 2004 Jun 24.
A device that releases chemical compounds in small volumes and at multiple, well defined locations would be a powerful tool for clinical therapeutics and biological research. Many biomedical devices such as neurotransmitter-based prostheses or drug delivery devices require precise release of chemical compounds. Additionally, the ability to control chemical gradients will have applications in basic research such as studies of cell microenvironments, stem cell niches, metaplasia, or chemotaxis. We present such a device with repeatable delivery of chemical compounds at multiple locations on a chip surface. Using electroosmosis to drive flow through microfluidic channels, we pulse minute quantities of a bradykinin solution through four 5-microm apertures onto PC12 cells and show stimulation of individual cells using a Ca(2+)-sensitive fluorescent dye. We also present basic computational results with experimental verification of both fluid ejection and fluid withdrawal by imaging pH changes by using a fluorescent dye. This "artificial synapse chip" is a prototype neural interface that introduces a new paradigm for neural stimulation, with eventual application in treating macular degeneration and other neurological disorders.
一种能够在多个明确定义的位置小体积释放化合物的装置,将成为临床治疗和生物学研究的有力工具。许多生物医学装置,如基于神经递质的假体或药物递送装置,都需要精确释放化合物。此外,控制化学梯度的能力将在基础研究中得到应用,如细胞微环境、干细胞龛、化生或趋化性研究。我们展示了这样一种装置,它能够在芯片表面的多个位置重复递送化合物。利用电渗驱动流体通过微流体通道,我们将微量缓激肽溶液通过四个5微米的小孔脉冲到PC12细胞上,并使用钙敏荧光染料显示对单个细胞的刺激。我们还给出了基本的计算结果,并通过使用荧光染料成像pH变化对流体喷射和流体抽取进行了实验验证。这种“人工突触芯片”是一种原型神经接口,为神经刺激引入了一种新范式,最终可应用于治疗黄斑变性和其他神经疾病。