Suppr超能文献

从分子噪声到单个细菌的行为变异性

From molecular noise to behavioural variability in a single bacterium.

作者信息

Korobkova Ekaterina, Emonet Thierry, Vilar Jose M G, Shimizu Thomas S, Cluzel Philippe

机构信息

The Institute for Biophysical Dynamics and the James Franck Institute, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA.

出版信息

Nature. 2004 Apr 1;428(6982):574-8. doi: 10.1038/nature02404.

Abstract

The chemotaxis network that governs the motion of Escherichia coli has long been studied to gain a general understanding of signal transduction. Although this pathway is composed of just a few components, it exhibits some essential characteristics of biological complexity, such as adaptation and response to environmental signals. In studying intracellular networks, most experiments and mathematical models have assumed that network properties can be inferred from population measurements. However, this approach masks underlying temporal fluctuations of intracellular signalling events. We have inferred fundamental properties of the chemotaxis network from a noise analysis of behavioural variations in individual bacteria. Here we show that certain properties established by population measurements, such as adapted states, are not conserved at the single-cell level: for timescales ranging from seconds to several minutes, the behaviour of non-stimulated cells exhibit temporal variations much larger than the expected statistical fluctuations. We find that the signalling network itself causes this noise and identify the molecular events that produce it. Small changes in the concentration of one key network component suppress temporal behavioural variability, suggesting that such variability is a selected property of this adaptive system.

摘要

长期以来,人们一直在研究控制大肠杆菌运动的趋化网络,以全面了解信号转导。尽管这条途径仅由几个组件组成,但它展现出了生物复杂性的一些基本特征,比如适应性以及对环境信号的响应。在研究细胞内网络时,大多数实验和数学模型都假定网络特性可以从群体测量中推断出来。然而,这种方法掩盖了细胞内信号事件潜在的时间波动。我们通过对单个细菌行为变化的噪声分析推断出了趋化网络的基本特性。在这里我们表明,通过群体测量确定的某些特性,如适应状态,在单细胞水平上并不守恒:在从几秒到几分钟的时间尺度上,未受刺激细胞的行为表现出的时间变化远大于预期的统计波动。我们发现信号网络本身会导致这种噪声,并确定了产生它的分子事件。一个关键网络组件浓度的微小变化会抑制时间行为变异性,这表明这种变异性是这个自适应系统的一个特定属性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验