Ferraroni Marta, Solyanikova Inna P, Kolomytseva Marina P, Scozzafava Andrea, Golovleva Ludmila, Briganti Fabrizio
Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, Sesto Fiorentino I-50019, Italy.
J Biol Chem. 2004 Jun 25;279(26):27646-55. doi: 10.1074/jbc.M401692200. Epub 2004 Apr 1.
The crystal structure of the 4-chlorocatechol 1,2-dioxygenase from the Gram-positive bacterium Rhodococcus opacus (erythropolis) 1CP, a Fe(III) ion-containing enzyme involved in the aerobic biodegradation of chloroaromatic compounds, has been solved by multiple wavelength anomalous dispersion using the weak anomalous signal of the two catalytic irons (1 Fe/257 amino acids) and refined at a 2.5 A resolution (R(free) 28.7%; R factor 21.4%). The analysis of the structure and its comparison with the structure of catechol 1,2-dioxygenase from Acinetobacter calcoaceticus ADP1 (Ac 1,2-CTD) highlight significant differences between these enzymes. The general topology of the present enzyme comprises two catalytic domains (one for each subunit) related by a noncrystallographic 2-fold axis and separated by a common alpha-helical zipper motif consisting of five N-terminal helices from each subunit; furthermore the C-terminal tail is shortened significantly with respect to the known Ac 1,2-CTD. The presence of two phospholipids binding in a hydrophobic tunnel along the dimer axis is shown here to be a common feature for this class of enzyme. The active site cavity presents several dissimilarities with respect to the known catechol-cleaving enzyme. The catalytic nonheme iron(III) ion is bound to the side chains of Tyr-134, Tyr-169, His-194, and His-196, and a cocrystallized benzoate ion, bound to the metal center, reveals details on a novel mode of binding of bidentate inhibitors and a distinctive hydrogen bond network with the surrounding ligands. Among the amino acid residues expected to interact with substrates, several are different from the corresponding analogs of Ac 1,2-CTD: Asp-52, Ala-53, Gly-76, Phe-78, and Cys-224; in addition, regions of largely conserved amino acid residues in the catalytic cleft show different shapes resulting from several substantial backbone and side chain shifts. The present structure is the first of intradiol dioxygenases that specifically catalyze the cleavage of chlorocatechols, key intermediates in the aerobic catabolism of toxic chloroaromatics.
来自革兰氏阳性细菌红平红球菌1CP的4-氯儿茶酚1,2-双加氧酶的晶体结构已通过多波长反常色散法解析,该酶是一种含铁(III)离子的酶,参与氯代芳香族化合物的需氧生物降解,利用两个催化铁(1个铁/257个氨基酸)的微弱反常信号,并在2.5埃分辨率下进行了精修(R(自由)28.7%;R因子21.4%)。对该结构的分析及其与乙酸钙不动杆菌ADP1的儿茶酚1,2-双加氧酶(Ac 1,2-CTD)结构的比较突出了这些酶之间的显著差异。本酶的总体拓扑结构包括两个催化结构域(每个亚基一个),通过一个非晶体学的2倍轴相关联,并由一个共同的α-螺旋拉链基序隔开,该基序由每个亚基的五个N端螺旋组成;此外,相对于已知的Ac 1,2-CTD,C端尾巴显著缩短。在此显示,沿着二聚体轴在疏水通道中结合的两种磷脂的存在是这类酶的一个共同特征。活性位点腔与已知的儿茶酚裂解酶存在一些差异。催化性非血红素铁(III)离子与Tyr-134、Tyr-169、His-194和His-196的侧链结合,并且一个与金属中心共结晶的苯甲酸根离子揭示了双齿抑制剂新的结合模式以及与周围配体独特的氢键网络的细节。在预期与底物相互作用的氨基酸残基中,有几个与Ac 1,2-CTD的相应类似物不同:Asp-52、Ala-53、Gly-76、Phe-78和Cys-224;此外,催化裂隙中大量保守氨基酸残基的区域由于几个主要的主链和侧链位移而呈现出不同的形状。本结构是首次报道的特异性催化氯代儿茶酚裂解的二醇双加氧酶结构,氯代儿茶酚是有毒氯代芳香族化合物需氧分解代谢中的关键中间体。