Dipartimento di Chimica, Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino (FI), Italy.
J Struct Biol. 2010 Jun;170(3):548-64. doi: 10.1016/j.jsb.2009.12.023. Epub 2009 Dec 28.
The first crystallographic structures of a catechol 1,2-dioxygenase from a Gram-positive bacterium Rhodococcus opacus 1CP (Rho 1,2-CTD), a Fe(III) ion containing enzyme specialized in the aerobic biodegradation of catechols, and its adducts with catechol, 3-methylcatechol, 4-methylcatechol, pyrogallol (benzene-1,2,3-triol), 3-chlorocatechol, 4-chlorocatechol, 3,5-dichlorocatechol, 4,5-dichlorocatechol and protocatechuate (3,4-dihydroxybenzoate) have been determined and analyzed. This study represents the first extensive characterization of catechols adducts of 1,2-CTDs. The structural analyses reveal the diverse modes of binding to the active metal iron ion of the tested catechols thus allowing to identify the residues selectively involved in recognition of the diverse substrates by this class of enzymes. The comparison is further extended to the structural and functional characteristics of the other 1,2-CTDs isolated from Gram-positive and Gram-negative bacteria. Moreover the high structural homology of the present enzyme with the 3-chlorocatechol 1,2-dioxygenase from the same bacterium are discussed in terms of their different substrate specificity. The catalytic rates for Rho 1,2-CTD conversion of the tested compounds are also compared with the calculated energies of the highest occupied molecular orbital (E(HOMO)) of the substrates. A quantitative relationship (R=0.966) between the ln k(cat) and the calculated electronic parameter E(HOMO) was obtained for catechol, 3-methylcatechol, 4-methylcatechol, pyrogallol, 3-chlorocatechol, 4-chlorocatechol. This indicates that for these substrates the rate-limiting step of the reaction cycle is dependent on their nucleophilic reactivity. The discrepancies observed in the quantitative relationship for 3,5-dichlorocatechol, 4,5-dichlorocatechol and protocatechuate are ascribed to the sterical hindrances leading to the distorted binding of such catechols observed in the corresponding structures.
来自革兰氏阳性菌罗特氏球菌 1CP(Rho 1,2-CTD)的儿茶酚 1,2-双加氧酶的首个晶体结构,一种专门用于儿茶酚好氧生物降解的含有 Fe(III)离子的酶,以及其与儿茶酚、3-甲基儿茶酚、4-甲基儿茶酚、焦儿茶酚(苯-1,2,3-三醇)、3-氯儿茶酚、4-氯儿茶酚、3,5-二氯儿茶酚、4,5-二氯儿茶酚和原儿茶酸(3,4-二羟基苯甲酸)的加合物已被确定并进行了分析。本研究代表了对 1,2-CTD 儿茶酚加合物的首次广泛表征。结构分析揭示了不同测试儿茶酚与活性金属铁离子结合的模式,从而可以识别出该类酶识别不同底物时选择性涉及的残基。该比较进一步扩展到从革兰氏阳性菌和革兰氏阴性菌中分离出的其他 1,2-CTD 的结构和功能特征。此外,还根据它们不同的底物特异性,讨论了来自同一细菌的 3-氯儿茶酚 1,2-双加氧酶与本酶之间的高结构同源性。还比较了测试化合物对 Rho 1,2-CTD 转化的催化速率与底物最高占据分子轨道(E(HOMO))的计算能量。对于儿茶酚、3-甲基儿茶酚、4-甲基儿茶酚、焦儿茶酚、3-氯儿茶酚、4-氯儿茶酚,获得了 ln k(cat)与计算电子参数 E(HOMO)之间的定量关系(R=0.966)。这表明对于这些底物,反应循环的限速步骤取决于它们的亲核反应性。对于 3,5-二氯儿茶酚、4,5-二氯儿茶酚和原儿茶酸观察到的定量关系中的差异归因于导致在相应结构中观察到的这种儿茶酚的扭曲结合的空间位阻。