Glinsky Gennadi V, Glinskii Anna B, Stephenson Andrew J, Hoffman Robert M, Gerald William L
Sidney Kimmel Cancer Center, San Diego, California 92121, USA.
J Clin Invest. 2004 Mar;113(6):913-23. doi: 10.1172/JCI20032.
One of the major problems in management of prostate cancer is the lack of reliable genetic markers predicting the clinical course of the disease. We analyzed expression profiles of 12,625 transcripts in prostate tumors from patients with distinct clinical outcomes after therapy as well as metastatic human prostate cancer xenografts in nude mice. We identified small clusters of genes discriminating recurrent versus nonrecurrent disease with 90% and 75% accuracy in two independent cohorts of patients. We examined one group of samples (21 tumors) to discover the recurrence predictor genes and then validated the predictive power of these genes in a different set (79 tumors). Kaplan-Meier analysis demonstrated that recurrence predictor signatures are highly informative (P < 0.0001) in stratification of patients into subgroups with distinct relapse-free survival after therapy. A gene expression-based recurrence predictor algorithm was informative in predicting the outcome in patients with early-stage disease, with either high or low preoperative prostate-specific antigen levels and provided additional value to the outcome prediction based on Gleason sum or multiparameter nomogram. Overall, 88% of patients with recurrence of prostate cancer within 1 year after therapy were correctly classified into the poor-prognosis group. The identified algorithm provides additional predictive value over conventional markers of outcome and appears suitable for stratification of prostate cancer patients at the time of diagnosis into subgroups with distinct survival probability after therapy.
前列腺癌管理中的一个主要问题是缺乏能够预测疾病临床进程的可靠遗传标志物。我们分析了治疗后具有不同临床结局的前列腺癌患者以及裸鼠体内转移性人前列腺癌异种移植瘤中12,625个转录本的表达谱。我们在两个独立的患者队列中鉴定出了区分复发与未复发疾病的小基因簇,准确率分别为90%和75%。我们检测了一组样本(21个肿瘤)以发现复发预测基因,然后在另一组样本(79个肿瘤)中验证这些基因的预测能力。Kaplan-Meier分析表明,复发预测特征在将患者分层为治疗后具有不同无复发生存期的亚组时具有高度信息性(P < 0.0001)。基于基因表达的复发预测算法在预测早期疾病患者的结局时具有信息性,无论术前前列腺特异性抗原水平高低,并且为基于Gleason评分或多参数列线图的结局预测提供了额外价值。总体而言,88%在治疗后1年内复发的前列腺癌患者被正确分类为预后不良组。所鉴定的算法比传统的结局标志物具有额外的预测价值,并且似乎适用于在诊断时将前列腺癌患者分层为治疗后具有不同生存概率的亚组。