Suppr超能文献

模拟谷本相似度值分布并预测搜索结果。

Modeling Tanimoto Similarity Value Distributions and Predicting Search Results.

作者信息

Vogt Martin, Bajorath Jürgen

机构信息

Department of Life Science Informatics, Bonn-Aachen International Center for Information Technology, Rheinische Friedrich-Wilhelms-Universität Bonn, Dahlmannstr. 2, D-53113, Bonn, Germany.

出版信息

Mol Inform. 2017 Jul;36(7). doi: 10.1002/minf.201600131. Epub 2016 Dec 29.

Abstract

Similarity searching using molecular fingerprints has a long history in chemoinformatics and continues to be a popular approach for virtual screening. Typically, known active reference molecules are used to search databases for new active compounds. However, this search has black box character because similarity value distributions are dependent on fingerprints and compound classes. Consequently, no generally applicable similarity threshold values are available as reliable indicators of activity relationships between reference and database compounds. Therefore, it is generally uncertain where new active compounds might appear in database rankings, if at all. In this contribution, methods are discussed for modeling similarity value distributions of fingerprint search calculations using Tanimoto coefficients and estimating rank positions of active compounds. To our knowledge, these are the first approaches for predicting the results of fingerprint-based similarity searching.

摘要

使用分子指纹进行相似性搜索在化学信息学领域有着悠久的历史,并且仍然是虚拟筛选的一种常用方法。通常,已知的活性参考分子用于在数据库中搜索新的活性化合物。然而,这种搜索具有黑箱性质,因为相似性值分布取决于指纹和化合物类别。因此,不存在普遍适用的相似性阈值作为参考化合物与数据库化合物之间活性关系的可靠指标。所以,通常不确定新的活性化合物在数据库排名中是否会出现,以及会出现在哪里。在本论文中,我们讨论了使用Tanimoto系数对指纹搜索计算的相似性值分布进行建模以及估计活性化合物排名位置的方法。据我们所知,这些是预测基于指纹的相似性搜索结果的首批方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验