Nield Margaret, Arora Ashim, Dracup Kathleen, Hoo Guy W Soo, Cooper Christopher B
VA Greater Los Angeles Healthcare System, Pulmonary Section, Los Angeles, CA 90073, USA.
J Rehabil Res Dev. 2003 Sep-Oct;40(5):407-14. doi: 10.1682/jrrd.2003.09.0407.
Patients with obstructive and restrictive ventilatory abnormalities suffer from exercise intolerance and dyspnea. Breathing pattern components (volume, flow, and timing) during incremental exercise may provide further insight in the role played by dynamic hyperinflation in the genesis of dyspnea. This study analyzed the breathing patterns of patients with obstructive and restrictive ventilatory abnormalities during incremental exercise. It also explored breathing pattern components with dyspnea at maximum oxygen uptake (VO2 max). Twenty patients, thirteen obstructive patients (forced expiratory volume 38% +/- 13% predicted, forced expiratory volume in 1 s/forced vital capacity ratio 39 +/- 8%), and seven restrictive patients (forced vital capacity 55 +/- 16% predicted, forced expiratory volume in 1 s/forced vital capacity ratio 84% +/- 11%) performed symptom-limited incremental exercise tests on a cycle ergometer with breath-by-breath determination of ventilation and gas exchange parameters. Breathing patterns were analyzed at baseline, 20, 40, 60, 80, and 100 percent of VO2 max. Dyspnea was measured at end-exercise with a 100 mm visual analogue scale. The timing ratio of inspiratory to expiratory time (T(I)/T(E)) and the flow ratio of inspiratory flow to expiratory flow ratio (V(I)/V(E)) were different (p < 0.008) between obstructive and restrictive patients at all exercise intensity levels. The timing components of expiratory time (T(E)) and inspiratory time to total time (T(I)T(TOT)) were significantly different (p < 0.008) at baseline and maximum exercise. Dyspnea scores were not significantly different. For obstructive patients, correlations were noted between T(I)/T(E), V(I)/V(E), T(I)T(TOT) and dyspnea (p < 0.05). Breathing pattern-timing components, specifically T(I)/T(E), in patients with obstructive and restrictive ventilatory abnormalities during exercise provided further insight into the pathophysiology of the two conditions and the contribution of dynamic hyperinflation to dyspnea.
患有阻塞性和限制性通气异常的患者会出现运动不耐受和呼吸困难。递增运动期间的呼吸模式组成部分(容量、流量和时间)可能会进一步揭示动态肺过度充气在呼吸困难发生过程中所起的作用。本研究分析了患有阻塞性和限制性通气异常的患者在递增运动期间的呼吸模式。研究还探讨了在最大摄氧量(VO2 max)时伴有呼吸困难的呼吸模式组成部分。20名患者,其中13名阻塞性患者(用力呼气量为预测值的38%±13%,1秒用力呼气量/用力肺活量比值为39±8%),7名限制性患者(用力肺活量为预测值的55±16%,1秒用力呼气量/用力肺活量比值为84%±11%)在功率自行车上进行了症状限制性递增运动试验,逐次呼吸测定通气和气体交换参数。在VO2 max的基线、20%、40%、60%、80%和100%时分析呼吸模式。运动结束时用100毫米视觉模拟量表测量呼吸困难程度。在所有运动强度水平下,阻塞性和限制性患者之间吸气时间与呼气时间的时间比(T(I)/T(E))以及吸气流量与呼气流量的流量比(V(I)/V(E))均存在差异(p<0.008)。在基线和最大运动时,呼气时间(T(E))和吸气时间与总时间的时间比(T(I)/T(TOT))的时间组成部分存在显著差异(p<0.008)。呼吸困难评分无显著差异。对于阻塞性患者,T(I)/T(E)、V(I)/V(E)、T(I)/T(TOT)与呼吸困难之间存在相关性(p<0.05)。运动期间患有阻塞性和限制性通气异常的患者的呼吸模式时间组成部分,特别是T(I)/T(E),进一步揭示了这两种情况的病理生理学以及动态肺过度充气对呼吸困难的影响。