Subramanian Vaidyanathan, Wolf Eduardo E, Kamat Prashant V
Notre Dame Radiation Laboratory and Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA.
J Am Chem Soc. 2004 Apr 21;126(15):4943-50. doi: 10.1021/ja0315199.
Photoexcited semiconductor nanoparticles undergo charge equilibration when they are in contact with metal nanoparticles. Such a charge distribution has direct influence in dictating the energetics of the composite by shifting the Fermi level to more negative potentials. The transfer of electrons to Au nanoparticles has now been probed by exciting TiO(2) nanoparticles under steady-state and laser pulse excitation. Equilibration with the C(60)/C(60)(-) redox couple provides a means to determine the apparent Fermi level of the TiO(2)-Au composite system. The size-dependent shift in the apparent Fermi level of the TiO(2)-Au composite (20 mV for 8-nm diameter and 40 mV for 5-nm and 60 mV for 3-nm gold nanoparticles) shows the ability of Au nanoparticles to influence the energetics by improving the photoinduced charge separation. Isolation of individual charge-transfer steps from UV-excited TiO(2) --> Au --> C(60) has provided mechanistic and kinetic information on the role of metal in semiconductor-assisted photocatalysis and size-dependent catalytic activity of metal-semiconductor nanocomposites.
当光激发的半导体纳米颗粒与金属纳米颗粒接触时,会发生电荷平衡。这种电荷分布通过将费米能级转移到更负的电位,对复合材料的能量学有直接影响。现在,通过在稳态和激光脉冲激发下激发TiO(2)纳米颗粒,研究了电子向金纳米颗粒的转移。与C(60)/C(60)(-)氧化还原对的平衡提供了一种确定TiO(2)-Au复合系统表观费米能级的方法。TiO(2)-Au复合材料表观费米能级的尺寸依赖性变化(直径为8纳米时为20毫伏,5纳米时为40毫伏,3纳米金纳米颗粒时为60毫伏)表明,金纳米颗粒能够通过改善光诱导电荷分离来影响能量学。从紫外激发的TiO(2)→Au→C(60)中分离出各个电荷转移步骤,提供了关于金属在半导体辅助光催化中的作用以及金属-半导体纳米复合材料尺寸依赖性催化活性的机理和动力学信息。