Suppr超能文献

等离子体金属-黄铜矿杂化物中的直接激发转移:来自单粒子线形分析的见解

Direct Excitation Transfer in Plasmonic Metal-Chalcopyrite-Hybrids: Insights from Single Particle Line Shape Analysis.

作者信息

Ouyang Tianhong, Chen Yi-Chen, Kundu Koustav, Zhong Xingjian, Mei Yixin, Nalluri Akilesh, Dennis Allison M, Reinhard Björn M

机构信息

Department of Chemistry and The Photonics Center, Boston University, Boston, Massachusetts 02215, United States.

Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States.

出版信息

ACS Nano. 2024 Aug 13;18(32):21565-21575. doi: 10.1021/acsnano.4c07442. Epub 2024 Jul 30.

Abstract

Hybrid nanomaterials containing both noble metal and semiconductor building blocks provide an engineerable platform for realizing direct or indirect charge and energy transfer for enhanced plasmonic photoconversion and photocatalysis. In this work, silver nanoparticles (AgNPs) and chalcopyrite (CuFeS) nanocrystals (NCs) are combined into a AgNP@CuFeS hybrid structure comprising NCs embedded in a self-assembled lipid coating around the AgNP core. In AgNP@CuFeS hybrid structures, both metallic and semiconductor NCs support quasistatic resonances. To characterize the interactions between these resonances and their effect on potential charge and energy transfer, direct interfacial excitation transfer between the AgNP core and surrounding CuFeS NCs is probed through single particle line shape analysis and supporting electromagnetic simulations. These studies reveal that CuFeS NCs localized in the evanescent field of the central AgNP induce a broadening of the metal NP line shape that peaks when an energetic match between the AgNP and CuFeS NC resonances maximizes direct energy transfer. Dimers of AgNPs whose resonances exhibit poor energetic overlap with the CuFeS NC quasistatic resonance yield much weaker line shape broadening in a control experiment, corroborating the existence of resonant energy transfer in the AgNP@CuFeS hybrid. Resonant coupling between the metallic and semiconductor building blocks in the investigated hybrid architecture provides a mechanism for utilizing the large optical cross-section of the central AgNP to enhance the generation of reactive charge carriers in the surrounding semiconductor NCs for potential applications in photocatalysis.

摘要

同时包含贵金属和半导体组件的混合纳米材料为实现直接或间接的电荷与能量转移提供了一个可设计的平台,以增强等离子体光转换和光催化性能。在这项工作中,银纳米颗粒(AgNPs)和黄铜矿(CuFeS)纳米晶体(NCs)被组合成一种AgNP@CuFeS混合结构,该结构由嵌入围绕AgNP核的自组装脂质涂层中的纳米晶体组成。在AgNP@CuFeS混合结构中,金属和半导体纳米晶体都支持准静态共振。为了表征这些共振之间的相互作用及其对潜在电荷和能量转移的影响,通过单粒子线形分析和辅助电磁模拟来探测AgNP核与周围CuFeS纳米晶体之间的直接界面激发转移。这些研究表明,位于中心AgNP倏逝场中的CuFeS纳米晶体导致金属纳米颗粒线形展宽,当AgNP和CuFeS纳米晶体共振之间的能量匹配使直接能量转移最大化时达到峰值。在对照实验中,其共振与CuFeS纳米晶体准静态共振的能量重叠较差的AgNP二聚体产生的线形展宽要弱得多,这证实了AgNP@CuFeS混合结构中存在共振能量转移。所研究的混合结构中金属和半导体组件之间的共振耦合提供了一种机制,可利用中心AgNP的大光学截面来增强周围半导体纳米晶体中反应性电荷载流子的产生,以用于光催化的潜在应用。

相似文献

2
Manipulating Plasmon-Generated Hot Carriers for Photocatalysis.用于光催化的等离激元产生热载流子的操控
Acc Chem Res. 2025 Aug 19;58(16):2562-2572. doi: 10.1021/acs.accounts.5c00313. Epub 2025 Aug 1.

引用本文的文献

1
Unraveling Plasmon-Enhanced Reactive Oxygen Species Generation through Ultrafast Light.通过超快光解析等离子体增强活性氧的产生
J Phys Chem C Nanomater Interfaces. 2025 Feb 20;129(7):3920-3930. doi: 10.1021/acs.jpcc.4c08071. Epub 2025 Feb 11.

本文引用的文献

2
Effective Mass for Holes in Paramagnetic, Plasmonic CuFeS Semiconductor Nanocrystals.顺磁、等离子体CuFeS半导体纳米晶体中空穴的有效质量
J Phys Chem C Nanomater Interfaces. 2022 Aug 4;126(30):12669-12679. doi: 10.1021/acs.jpcc.2c03459. Epub 2022 Jul 26.
5
Directional Damping of Plasmons at Metal-Semiconductor Interfaces.金属-半导体界面等离激元的定向阻尼
Acc Chem Res. 2022 Jul 5;55(13):1845-1856. doi: 10.1021/acs.accounts.2c00001. Epub 2022 Jun 13.
8
Controlled Synthesis and Exploration of CuFeS Bornite Nanocrystals.CuFeS 斑铜矿纳米晶体的可控合成与探索
Chem Mater. 2021 Sep 28;33(18):7408-7416. doi: 10.1021/acs.chemmater.1c02029. Epub 2021 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验