Apostoaei A Iulian, Miller Laurence F
SENES Oak Ridge, Inc., 102 Donner Drive, Oak Ridge, TN 37830, USA.
Health Phys. 2004 May;86(5):460-82. doi: 10.1097/00004032-200405000-00003.
Quantification of uncertainties in doses from intakes of radionuclides is important in risk assessments and epidemiologic studies of individuals exposed to radiation. In this study, the uncertainties in the doses per unit intake (i.e., dose coefficients) for ingestion of 131I, 137Cs, and 90Sr by healthy individuals have been determined. Age-dependent thyroid dose coefficients were derived for 131I. The analysis for 131I uses recent measurements of thyroid volume obtained by ultrasonography, which indicate a thyroid mass lower than that previously obtained using autopsy measurements. The coefficients for 137Cs are determined using the relationship between the biological half-lives and the amount of potassium in the human body. The most recent International Commission on Radiological Protection biokinetic model was employed to determine the uncertainties for 90Sr. For 137Cs and 90Sr, the dose coefficients represent exposure in adulthood and they were determined for all organs of radiological importance. The uncertainty in the estimated dose coefficients represent state of knowledge estimates for a reference individual, and they are described by lognormal distributions with a specified geometric mean (GM) and geometric standard deviation (GSD). The estimated geometric means vary only slightly from the dose coefficients reported by ICRP publications. The largest uncertainty is observed in the dose coefficients for bone surface (GSD = 2.6), and red bone marrow (GSD = 2.4) in the case of ingestion of 90Sr. For most other organs, the uncertainty in the 90Sr dose coefficients is characterized by a GSD of 1.8 (or less for some organs). For 131I, the uncertainty in the thyroid dose coefficients is well represented by a GSD of 1.7 for both sexes and all ages other than infants for whom a GSD of 1.8 is more appropriate. The lowest uncertainties are obtained for the dose coefficients from ingestion of 137Cs (GSD = 1.24 for males; 1.4 for females). A dominant source of uncertainty in the ingestion dose coefficients is the variation of the biokinetic parameters. For 131I, the largest contribution to the uncertainty comes from the variation in the thyroid mass, but the contribution of the biokinetic parameters is comparable. The biokinetic parameters with the largest contribution to the uncertainty are (a) the fractional uptake from blood to thyroid in the case of ingestion of 131I, (b) the absorbed fraction from the gastrointestinal tract (f1) in the case of 90Sr, and (c) the amount of potassium in the body for 137Cs. The contribution to the uncertainty of the absorbed fraction (which accounts for the fraction of energy deposited in the target organ) is the smallest contributor to the uncertainty in the dose coefficients for most organs. To reduce the uncertainty in the dose estimated for a real individual, one should determine the above-mentioned parameters for the specified individual rather than to rely on assumptions for a reference individual.
对摄入放射性核素所致剂量的不确定性进行量化,在对受辐射个体的风险评估和流行病学研究中具有重要意义。在本研究中,已确定了健康个体摄入¹³¹I、¹³⁷Cs和⁹⁰Sr时每单位摄入量的剂量不确定性(即剂量系数)。得出了¹³¹I的年龄依赖性甲状腺剂量系数。对¹³¹I的分析采用了最近通过超声获得的甲状腺体积测量值,这些测量值表明甲状腺质量低于先前通过尸检测量获得的值。¹³⁷Cs的系数是利用生物半衰期与人体钾含量之间的关系确定的。采用了国际放射防护委员会最新的生物动力学模型来确定⁹⁰Sr的不确定性。对于¹³⁷Cs和⁹⁰Sr,剂量系数代表成年期的暴露情况,并且针对所有具有放射学重要性的器官进行了确定。估计剂量系数的不确定性代表了对参考个体的知识估计状态,并且由具有指定几何均值(GM)和几何标准差(GSD)的对数正态分布来描述。估计的几何均值与国际放射防护委员会出版物报告的剂量系数仅略有不同。在摄入⁹⁰Sr的情况下,骨表面(GSD = 2.6)和红骨髓(GSD = 2.4)的剂量系数中观察到最大的不确定性。对于大多数其他器官,⁹⁰Sr剂量系数的不确定性特征为GSD为1.8(某些器官的GSD更小)。对于¹³¹I,除婴儿外,所有年龄和性别的甲状腺剂量系数的不确定性均以GSD为1.7很好地表示,对于婴儿,GSD为1.8更合适。摄入¹³⁷Cs的剂量系数的不确定性最低(男性GSD = 1.24;女性GSD = 1.4)。摄入剂量系数中不确定性的主要来源是生物动力学参数的变化。对于¹³¹I,不确定性的最大贡献来自甲状腺质量的变化,但生物动力学参数的贡献相当。对不确定性贡献最大的生物动力学参数是:(a)摄入¹³¹I时从血液到甲状腺的摄取分数;(b)⁹⁰Sr情况下胃肠道的吸收分数(f1);(c)¹³⁷Cs情况下体内的钾含量。对于大多数器官来说,吸收分数(其占沉积在靶器官中的能量分数)对剂量系数不确定性的贡献是最小的。为了降低对实际个体估计剂量的不确定性,应该针对特定个体确定上述参数,而不是依赖于对参考个体的假设。