Suppr超能文献

人工语法分类中的视觉特征学习

Visual feature learning in artificial grammar classification.

作者信息

Chang Grace Y, Knowlton Barbara J

机构信息

Department of Psychology, University of California, Los Angeles, 90095-1563, USA.

出版信息

J Exp Psychol Learn Mem Cogn. 2004 May;30(3):714-22. doi: 10.1037/0278-7393.30.3.714.

Abstract

The Artificial Grammar Learning task has been used extensively to assess individuals' implicit learning capabilities. Previous work suggests that participants implicitly acquire rule-based knowledge as well as exemplar-specific knowledge in this task. This study investigated whether exemplar-specific knowledge acquired in this task is based on the visual features of the exemplars. When a change in the font and case occurred between study and test, there was no effect on sensitivity to grammatical rules in classification judgments. However, such a change did virtually eliminate sensitivity to training frequencies of letter bigrams and trigrams (chunk strength) in classification judgments. Performance of a secondary task during study eliminated this font sensitivity and generally reduced the contribution of chunk strength knowledge. The results are consistent with the idea that perceptual fluency makes a contribution to artificial grammar judgments.

摘要

人工语法学习任务已被广泛用于评估个体的内隐学习能力。先前的研究表明,参与者在该任务中会隐性地获取基于规则的知识以及特定样例的知识。本研究调查了在该任务中获取的特定样例知识是否基于样例的视觉特征。当学习和测试之间字体和大小写发生变化时,对分类判断中语法规则的敏感性没有影响。然而,这种变化实际上消除了分类判断中对字母双连字和三连字训练频率(组块强度)的敏感性。学习期间的第二项任务表现消除了这种字体敏感性,并普遍降低了组块强度知识的贡献。结果与感知流畅性对人工语法判断有贡献的观点一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验