Suppr超能文献

聚二甲基硅氧烷微流体系统中的焦耳热与热传递

Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems.

作者信息

Erickson David, Sinton David, Li Dongqing

机构信息

Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, CanadaM5S 3G8.

出版信息

Lab Chip. 2003 Aug;3(3):141-9. doi: 10.1039/b306158b. Epub 2003 Jul 17.

Abstract

Joule heating is a significant problem in electrokinetically driven microfluidic chips, particularly polymeric systems where low thermal conductivities amplify the difficulty in rejecting this internally generated heat. In this work, a combined experimental (using a microscale thermometry technique) and numerical (using a 3D "whole-chip" finite element model) approach is used to examine Joule heating and heat transfer at a microchannel intersection in poly(dimethylsiloxane)(PDMS), and hybrid PDMS/Glass microfluidic systems. In general the numerical predictions and the experimental results agree quite well (typically within +/- 3 degree C), both showing dramatic temperature gradients at the intersection. At high potential field strengths a nearly five fold increase in the maximum buffer temperature was observed in the PDMS/PDMS chips over the PDMS/Glass systems. The detailed numerical analysis revealed that the vast majority of steady state heat rejection is through lower substrate of the chip, which was significantly impeded in the former case by the lower thermal conductivity PDMS substrate. The observed higher buffer temperature also lead to a number of significant secondary effects including a near doubling of the volume flow rate. Simple guidelines are proposed for improving polymeric chip design and thereby extend the capabilities of these microfluidic systems.

摘要

焦耳热是电动驱动微流控芯片中的一个重要问题,特别是在聚合物系统中,低导热率加剧了排出这种内部产生热量的难度。在这项工作中,采用了一种结合实验(使用微尺度测温技术)和数值模拟(使用三维“全芯片”有限元模型)的方法,来研究聚二甲基硅氧烷(PDMS)以及混合PDMS/玻璃微流控系统中微通道交叉处的焦耳热和热传递。总体而言,数值预测和实验结果吻合得很好(通常在±3摄氏度范围内),两者均显示交叉处存在显著的温度梯度。在高电位场强下,与PDMS/玻璃系统相比,PDMS/PDMS芯片中的最大缓冲液温度观察到近五倍的增加。详细的数值分析表明,绝大多数稳态散热是通过芯片的下部基板进行的,而在前者情况下,较低导热率的PDMS基板显著阻碍了散热。观察到的较高缓冲液温度还导致了许多显著的二次效应,包括体积流速几乎翻倍。提出了改进聚合物芯片设计的简单指导原则,从而扩展这些微流控系统的功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验