Suppr超能文献

利用昼夜心率变异性特征和机器学习估计高血压患者左心室射血分数水平:一种复合多尺度熵分析

Utilizing Circadian Heart Rate Variability Features and Machine Learning for Estimating Left Ventricular Ejection Fraction Levels in Hypertensive Patients: A Composite Multiscale Entropy Analysis.

作者信息

Zhang Nanxiang, Pan Qi, Yang Shuo, Huang Leen, Yin Jianan, Lin Hai, Huang Xiang, Ding Chonglong, Zou Xinyan, Zheng Yongjun, Zhang Jinxin

机构信息

Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.

Zhongshan Center for Disease Control and Prevention, Zhongshan 528400, China.

出版信息

Biosensors (Basel). 2025 Jul 10;15(7):442. doi: 10.3390/bios15070442.

Abstract

BACKGROUND

Early identification of left ventricular ejection fraction (LVEF) levels during the progression of hypertension is essential to prevent cardiac deterioration. However, achieving a non-invasive, cost-effective, and definitive assessment is challenging. It has prompted us to develop a comprehensive machine learning framework for the automatic quantitative estimation of LVEF levels from electrocardiography (ECG) signals.

METHODS

We enrolled 200 hypertensive patients from Zhongshan City, Guangdong Province, China, from 1 November 2022 to 1 January 2025. Participants underwent 24 h Holter monitoring and echocardiography for LVEF estimation. We developed a comprehensive machine learning framework that initiated with preprocessed ECG signal in one-hour intervals to extract CMSE-based heart rate variability (HRV) features, then utilized machine learning models such as linear regression (LR), Support Vector Machines (SVMs), and random forests (RFs) with recursive feature elimination for optimal LVEF estimation.

RESULTS

The LR model, notably during early night interval (20:00-21:00), achieved a RMSE of 4.61% and a MAE of 3.74%, highlighting its superiority. Compared with other similar studies, key CMSE parameters (Scales 1, 5, Slope 1-5, and Area 1-5) can effectively enhance regression models' estimation performance.

CONCLUSION

Our findings suggest that CMSE-derived circadian HRV features from Holter ECG could serve as a non-invasive, cost-effective, and interpretable solution for LVEF assessment in community settings. From a machine learning interpretable perspective, the proposed method emphasized CMSE's clinical potential in capturing autonomic dynamics and cardiac function fluctuations.

摘要

背景

在高血压进展过程中早期识别左心室射血分数(LVEF)水平对于预防心脏功能恶化至关重要。然而,实现非侵入性、成本效益高且准确的评估具有挑战性。这促使我们开发一个综合机器学习框架,用于从心电图(ECG)信号中自动定量估计LVEF水平。

方法

我们于2022年11月1日至2025年1月1日在中国广东省中山市招募了200名高血压患者。参与者接受了24小时动态心电图监测和超声心动图检查以估计LVEF。我们开发了一个综合机器学习框架,该框架以一小时间隔的预处理ECG信号开始,以提取基于校正平均符号熵(CMSE)的心率变异性(HRV)特征,然后利用机器学习模型,如线性回归(LR)、支持向量机(SVM)和随机森林(RF),并通过递归特征消除进行最佳LVEF估计。

结果

LR模型,尤其是在夜间早期(20:00 - 21:00),均方根误差(RMSE)为4.61%,平均绝对误差(MAE)为3.74%,突出了其优越性。与其他类似研究相比,关键的CMSE参数(尺度1、5,斜率1 - 5,以及面积1 - 5)可以有效提高回归模型的估计性能。

结论

我们的研究结果表明,从动态心电图中提取的基于CMSE的昼夜HRV特征可作为社区环境中LVEF评估的一种非侵入性、成本效益高且可解释的解决方案。从机器学习可解释性的角度来看,所提出的方法强调了CMSE在捕捉自主神经动力学和心脏功能波动方面的临床潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00e6/12293304/ecf10a24f6c5/biosensors-15-00442-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验