Caviedes Jorge E, Cimino James J
Intel Corporation, 5000 W. Chandler Blvd., Chandler, AZ 85226, USA.
J Biomed Inform. 2004 Apr;37(2):77-85. doi: 10.1016/j.jbi.2004.02.001.
The objective of this work is to investigate the feasibility of conceptual similarity metrics in the framework of the Unified Medical Language System (UMLS). We have investigated an approach based on the minimum number of parent links between concepts, and evaluated its performance relative to human expert estimates on three sets of concepts for three terminologies within the UMLS (i.e., MeSH, ICD9CM, and SNOMED). The resulting quantitative metric enables computer-based applications that use decision thresholds and approximate matching criteria. The proposed conceptual matching supports problem solving and inferencing (using high-level, generic concepts) based on readily available data (typically represented as low-level, specific concepts). Through the identification of semantically similar concepts, conceptual matching also enables reasoning in the absence of exact, or even approximate, lexical matching. Finally, conceptual matching is relevant for terminology development and maintenance, machine learning research, decision support system development, and data mining research in biomedical informatics and other fields.
这项工作的目标是研究统一医学语言系统(UMLS)框架下概念相似性度量的可行性。我们研究了一种基于概念之间父链接最小数量的方法,并针对UMLS中的三种术语(即医学主题词表(MeSH)、国际疾病分类第九版临床修订本(ICD9CM)和医学系统命名法(SNOMED))的三组概念,评估了其相对于人类专家估计的性能。由此产生的定量度量使基于计算机的应用程序能够使用决策阈值和近似匹配标准。所提出的概念匹配支持基于现成数据(通常表示为低级、具体概念)的问题解决和推理(使用高级、通用概念)。通过识别语义相似的概念,概念匹配还能够在没有精确甚至近似词汇匹配的情况下进行推理。最后,概念匹配与术语开发和维护、机器学习研究、决策支持系统开发以及生物医学信息学和其他领域的数据挖掘研究相关。