Suppr超能文献

通过光谱斜入射反射法进行皮肤癌检测:分类及生理根源

Skin cancer detection by spectroscopic oblique-incidence reflectometry: classification and physiological origins.

作者信息

Garcia-Uribe Alejandro, Kehtarnavaz Nasser, Marquez Guillermo, Prieto Victor, Duvic Madeleine, Wang Lihong V

机构信息

Department of Electrical Engineering, Texas A&M University, College Station, Texas 77843-3120, USA.

出版信息

Appl Opt. 2004 May 1;43(13):2643-50. doi: 10.1364/ao.43.002643.

Abstract

Data obtained from 102 skin lesions in vivo by spectroscopic oblique-incidence reflectometry were analyzed. The participating physicians initially divided the skin lesions into two visually distinguishable groups based on the lesions' melanocytic conditions. Group 1 consisted of the following two cancerous and benign subgroups: (1) basal cell carcinomas and squamous cell carcinomas and (2) benign actinic keratoses, seborrheic keratoses, and warts. Group 2 consisted of (1) dysplastic nevi and (2) benign common nevi. For each group, a bootstrap-based Bayes classifier was designed to separate the benign from the dysplastic or cancerous tissues. A genetic algorithm was then used to obtain the most effective combination of spatiospectral features for each classifier. The classifiers, tested with prospective blind studies, reached statistical accuracies of 100% and 95% for groups 1 and 2, respectively. Properties that related to cell-nuclear size, to the concentration of oxyhemoglobin, and to the concentration of deoxyhemoglobin as well as the derived concentration of total hemoglobin and oxygen saturation were defined to explain the origins of the classification outcomes.

摘要

对通过光谱斜入射反射法在体内获取的102个皮肤病变的数据进行了分析。参与研究的医生最初根据病变的黑素细胞状况将皮肤病变分为两个视觉上可区分的组。第1组由以下两个癌性和良性亚组组成:(1)基底细胞癌和鳞状细胞癌,以及(2)良性光化性角化病、脂溢性角化病和疣。第2组由(1)发育异常痣和(2)良性普通痣组成。对于每组,设计了一种基于自助法的贝叶斯分类器,以区分良性组织与发育异常或癌性组织。然后使用遗传算法为每个分类器获得最有效的空间光谱特征组合。通过前瞻性盲法研究测试,分类器对第1组和第2组的统计准确率分别达到100%和95%。定义了与细胞核大小、氧合血红蛋白浓度、脱氧血红蛋白浓度以及总血红蛋白和氧饱和度的衍生浓度相关的特性,以解释分类结果的来源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验