Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
Inorg Chem. 2012 Sep 3;51(17):9465-80. doi: 10.1021/ic301272h. Epub 2012 Aug 21.
A mononuclear copper(II) superoxo species has been invoked as the key reactive intermediate in aliphatic substrate hydroxylation by copper monooxygenases such as peptidylglycine α-hydroxylating monooxygenase (PHM), dopamine β-monooxygenase (DβM), and tyramine β-monooxygenase (TβM). We have recently developed a mononuclear copper(II) end-on superoxo complex using a N-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane tridentate ligand, the structure of which is similar to the four-coordinate distorted tetrahedral geometry of the copper-dioxygen adduct found in the oxy-form of PHM (Prigge, S. T.; Eipper, B. A.; Mains, R. E.; Amzel, L. M. Science2004, 304, 864-867). In this study, structures and physicochemical properties as well as reactivity of the copper(I) and copper(II) complexes supported by a series of tridentate ligands having the same N-[2-(2-pyridyl)ethyl]-1,5-diazacyclooctane framework have been examined in detail to shed light on the chemistry dictated in the active sites of mononuclear copper monooxygenases. The ligand exhibits unique feature to stabilize the copper(I) complexes in a T-shape geometry and the copper(II) complexes in a distorted tetrahedral geometry. Low temperature oxygenation of the copper(I) complexes generated the mononuclear copper(II) end-on superoxo complexes, the structure and spin state of which have been further characterized by density functional theory (DFT) calculations. Detailed kinetic analysis on the O(2)-adduct formation reaction gave the kinetic and thermodynamic parameters providing mechanistic insights into the association and dissociation processes of O(2) to the copper complexes. The copper(II) end-on superoxo complex thus generated gradually decomposed to induce aliphatic ligand hydroxylation. Kinetic and DFT studies on the decomposition reaction have suggested that C-H bond abstraction occurs unimolecularly from the superoxo complex with subsequent rebound of the copper hydroperoxo species to generate the oxygenated product. The present results have indicated that a superoxo species having a four-coordinate distorted tetrahedral geometry could be reactive enough to induce the direct C-H bond activation of aliphatic substrates in the enzymatic systems.
单核铜(II)过氧物种被认为是肽基甘氨酸α-羟化酶(PHM)、多巴胺β-单加氧酶(DβM)和酪胺β-单加氧酶(TβM)等铜单加氧酶催化脂肪族底物羟化的关键反应中间体。我们最近使用 N-[2-(2-吡啶基)乙基]-1,5-二氮杂环辛烷三齿配体开发了单核铜(II)端氧过氧配合物,其结构类似于 PHM 氧形式中发现的四配位扭曲四面体几何结构的铜-氧加合物(Prigge,S. T.;Eipper,B. A.;Mains,R. E.;Amzel,L. M. Science2004, 304, 864-867)。在这项研究中,详细研究了一系列具有相同 N-[2-(2-吡啶基)乙基]-1,5-二氮杂环辛烷骨架的三齿配体支持的铜(I)和铜(II)配合物的结构和物理化学性质以及反应性,以阐明单核铜单加氧酶活性位点中的化学性质。该配体具有独特的特性,可以稳定 T 型几何结构的铜(I)配合物和扭曲四面体几何结构的铜(II)配合物。铜(I)配合物的低温氧合生成单核铜(II)端氧过氧配合物,其结构和自旋态进一步通过密度泛函理论(DFT)计算进行了表征。对 O(2)-加合物形成反应的详细动力学分析给出了动力学和热力学参数,为 O(2)与铜配合物的缔合和解离过程提供了机制见解。由此生成的铜(II)端氧过氧配合物逐渐分解,诱导脂肪族配体羟化。对分解反应的动力学和 DFT 研究表明,C-H 键从过氧配合物中以单分子方式断裂,随后铜过氧物种重新结合生成含氧产物。目前的结果表明,具有四配位扭曲四面体几何结构的过氧物种可能具有足够的反应活性,可以在酶系统中诱导脂肪族底物的直接 C-H 键活化。