Yu Yue-Yue, Chen Yan, Dai Gu, Chen Jie, Sun Xue-Mei, Wen Chuan-Jun, Zhao Dong-Hong, Chang Donald C, Li Chao-Jun
Jiangsu Key Laboratory for Molecular & Medical Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210097, Jiangsu Province, China.
Int J Biochem Cell Biol. 2004 Aug;36(8):1562-72. doi: 10.1016/j.biocel.2003.12.016.
Calmodulin is a major cytoplasmic calcium receptor that performs multiple functions in the cell including cytokinesis. Central spindle appears between separating chromatin masses after metaphase-anaphase transition. The interaction of microtubules from central spindle with cell cortex regulates the cleavage furrow formation. In this paper, we use green fluorescence protein (GFP)-tagged calmodulin as a living cell probe to examine the detailed dynamic redistribution and co-localization of calmodulin with central spindle during cytokinesis and the function of this distribution pattern in a tripolar HeLa cell model. We found that calmodulin is associated with spindle microtubules during mitosis and begins to aggregate with central spindle after anaphase initiation. The absence of either central spindle or central spindle-distributed calmodulin is correlated with the defect in the formation of cleavage furrow, where contractile ring-distributed CaM is also extinct. Further analysis found that both the assembly of central spindle and the formation of cleavage furrow are affected by the W7 treatment. The microtubule density of central spindle was decreased after the treatment. Only less than 10% of the synchronized cells enter cytokinesis when treated with 25 microM W7, and the completion time of furrow regression is also delayed from 10 min to at least 40 min. It is suggested that calmodulin plays a significant role in cytokinesis including furrow formation and regression, The understanding of the interaction between calmodulin and microtubules may give us insight into the mechanism through which calmodulin regulates cytokinesis.
钙调蛋白是一种主要的细胞质钙受体,在细胞中执行多种功能,包括胞质分裂。在中期 - 后期转换后,中央纺锤体出现在分离的染色质团块之间。来自中央纺锤体的微管与细胞皮层的相互作用调节分裂沟的形成。在本文中,我们使用绿色荧光蛋白(GFP)标记的钙调蛋白作为活细胞探针,以研究钙调蛋白在胞质分裂过程中与中央纺锤体的详细动态重新分布和共定位,以及这种分布模式在三极HeLa细胞模型中的功能。我们发现钙调蛋白在有丝分裂期间与纺锤体微管相关联,并在后期开始后与中央纺锤体聚集。中央纺锤体或中央纺锤体分布的钙调蛋白的缺失与分裂沟形成的缺陷相关,其中收缩环分布的钙调蛋白也消失。进一步分析发现,中央纺锤体的组装和分裂沟的形成均受W7处理的影响。处理后中央纺锤体的微管密度降低。用25 microM W7处理时,只有不到10%的同步细胞进入胞质分裂,并且沟回归的完成时间也从10分钟延迟到至少40分钟。表明钙调蛋白在包括沟形成和回归的胞质分裂中起重要作用,对钙调蛋白与微管之间相互作用的理解可能使我们深入了解钙调蛋白调节胞质分裂的机制。