Nair Lakshmi S, Bhattacharyya Subhabrata, Laurencin Cato T
Department of Orthopaedic Surgery, University of Virginia, Charlottesville, 22903, USA.
Expert Opin Biol Ther. 2004 May;4(5):659-68. doi: 10.1517/14712598.4.5.659.
Electrospinning has recently been developed as an efficient technique to develop polymeric nanofibres. Various synthetic and natural biodegradable polymers have been electrospun into fibres with diameters in the nanometre range (< 1 microm). The fibre diameter, structure and physical properties of the nanofibre matrices can be effectively tuned by controlling various parameters that affect the electrospinning process. The dimension and structure of electrospun polymeric nanofibre mats resembles mostly the collagen phase of natural extracellular matrix. This, combined with excellent physical properties such as high surface area, high porosity, interconnective pores of the nanofibre matrices and appropriate mechanical properties, well-controlled degradation rates and biocompatibility of the base polymer, make biodegradable polymeric nanofibre matrices ideal candidates for developing scaffolds for tissue engineering. This article reviews the recent advances in the development of synthetic biodegradable nanofibre-based matrices as scaffolds for tissue engineering.
静电纺丝最近已发展成为一种制备聚合物纳米纤维的有效技术。各种合成和天然可生物降解聚合物已被静电纺丝成直径在纳米范围内(<1微米)的纤维。通过控制影响静电纺丝过程的各种参数,可以有效地调节纳米纤维基质的纤维直径、结构和物理性质。静电纺丝聚合物纳米纤维垫的尺寸和结构大多类似于天然细胞外基质的胶原相。这与纳米纤维基质的高表面积、高孔隙率、相互连通的孔隙等优异物理性质以及基础聚合物良好控制的降解速率和生物相容性相结合,使可生物降解聚合物纳米纤维基质成为开发组织工程支架的理想候选材料。本文综述了基于合成可生物降解纳米纤维的基质作为组织工程支架的最新研究进展。
Expert Opin Biol Ther. 2004-5
Adv Exp Med Biol. 2015
J Tissue Eng Regen Med. 2014-7
Proc Inst Mech Eng H. 2016-11
Biomaterials. 2005-10
J Biomater Sci Polym Ed. 2019-7-9
Regen Biomater. 2022-12-26
Front Bioeng Biotechnol. 2022-7-8
Materials (Basel). 2021-10-22
Polymers (Basel). 2021-3-30
Regen Eng Transl Med. 2019-9
Adv Exp Med Biol. 2021
ACS Biomater Sci Eng. 2018-3-12