Suppr超能文献

骨骼肌再生工程

Skeletal Muscle Regenerative Engineering.

作者信息

Tang Xiaoyan, Daneshmandi Leila, Awale Guleid, Nair Lakshmi S, Laurencin Cato T

机构信息

Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT 06030, USA.

Department of Orthopaedic Surgery, UConn Health, Farmington, CT 06030, USA.

出版信息

Regen Eng Transl Med. 2019 Sep;5(3):233-251. doi: 10.1007/s40883-019-00102-9. Epub 2019 Apr 2.

Abstract

Skeletal muscles have the intrinsic ability to regenerate after minor injury, but under certain circumstances such as severe trauma from accidents, chronic diseases or battlefield injuries the regeneration process is limited. Skeletal muscle regenerative engineering has emerged as a promising approach to address this clinical issue. The regenerative engineering approach involves the convergence of advanced materials science, stem cell science, physical forces, insights from developmental biology, and clinical translation. This article reviews recent studies showing the potential of the convergences of technologies involving biomaterials, stem cells and bioactive factors in concert with clinical translation, in promoting skeletal muscle regeneration. Several types of biomaterials such as electrospun nanofibers, hydrogels, patterned scaffolds, decellularized tissues, and conductive matrices are being investigated. Detailed discussions are given on how these biomaterials can interact with cells and modulate their behavior through physical, chemical and mechanical cues. In addition, the application of physical forces such as mechanical and electrical stimulation are reviewed as strategies that can further enhance muscle contractility and functionality. The review also discusses established animal models to evaluate regeneration in two clinically relevant muscle injuries; volumetric muscle loss (VML) and muscle atrophy upon rotator cuff injury. Regenerative engineering approaches using advanced biomaterials, cells, and physical forces, developmental cues along with insights from immunology, genetics and other aspects of clinical translation hold significant potential to develop promising strategies to support skeletal muscle regeneration.

摘要

骨骼肌在受到轻微损伤后具有内在的再生能力,但在某些情况下,如交通事故造成的严重创伤、慢性疾病或战场损伤,再生过程是有限的。骨骼肌再生工程已成为解决这一临床问题的一种有前景的方法。再生工程方法涉及先进材料科学、干细胞科学、物理力、发育生物学见解以及临床转化的融合。本文综述了近期的研究,这些研究表明生物材料、干细胞和生物活性因子等技术与临床转化相结合,在促进骨骼肌再生方面具有潜力。正在研究几种类型的生物材料,如电纺纳米纤维、水凝胶、图案化支架、脱细胞组织和导电基质。详细讨论了这些生物材料如何通过物理、化学和机械信号与细胞相互作用并调节其行为。此外,还综述了机械和电刺激等物理力的应用,作为可以进一步增强肌肉收缩力和功能的策略。该综述还讨论了用于评估两种临床相关肌肉损伤再生情况的既定动物模型;即容积性肌肉损失(VML)和肩袖损伤后的肌肉萎缩。利用先进生物材料、细胞和物理力、发育线索以及来自免疫学、遗传学和临床转化其他方面的见解的再生工程方法,具有开发支持骨骼肌再生的有前景策略的巨大潜力。

相似文献

1
Skeletal Muscle Regenerative Engineering.骨骼肌再生工程
Regen Eng Transl Med. 2019 Sep;5(3):233-251. doi: 10.1007/s40883-019-00102-9. Epub 2019 Apr 2.
4
Tissue Engineered 3D Constructs for Volumetric Muscle Loss.用于容积性肌肉丧失的组织工程化 3D 构建体
Ann Biomed Eng. 2024 Sep;52(9):2325-2347. doi: 10.1007/s10439-024-03541-w. Epub 2024 Jul 31.
6
Biomaterials-Based Technologies in Skeletal Muscle Tissue Engineering.基于生物材料的骨骼肌组织工程技术。
Adv Healthc Mater. 2024 Jul;13(18):e2304196. doi: 10.1002/adhm.202304196. Epub 2024 May 20.
9
Biomimetic Scaffolds in Skeletal Muscle Regeneration.骨骼肌再生中的仿生支架
Discoveries (Craiova). 2019 Mar 31;7(1):e90. doi: 10.15190/d.2019.3.
10
Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering.用于再生工程的可生物降解聚磷腈基共混物。
Regen Eng Transl Med. 2017 Mar;3(1):15-31. doi: 10.1007/s40883-016-0022-7. Epub 2017 Jan 30.

引用本文的文献

7
Wearable and Implantable Soft Robots.可穿戴和可植入的软体机器人。
Chem Rev. 2024 Oct 23;124(20):11585-11636. doi: 10.1021/acs.chemrev.4c00513. Epub 2024 Oct 11.
8
Biomaterials for extrusion-based bioprinting and biomedical applications.用于基于挤出的生物打印和生物医学应用的生物材料。
Front Bioeng Biotechnol. 2024 Jun 21;12:1393641. doi: 10.3389/fbioe.2024.1393641. eCollection 2024.
9
Global hotspots and emerging trends in 3D bioprinting research.3D生物打印研究的全球热点与新趋势
Front Bioeng Biotechnol. 2023 May 25;11:1169893. doi: 10.3389/fbioe.2023.1169893. eCollection 2023.
10
Progress in bioprinting technology for tissue regeneration.组织再生生物打印技术的进展。
J Artif Organs. 2023 Dec;26(4):255-274. doi: 10.1007/s10047-023-01394-z. Epub 2023 Apr 29.

本文引用的文献

1
Regenerative Engineering of the Rotator Cuff of the Shoulder.肩部肩袖的再生工程
ACS Biomater Sci Eng. 2018 Mar 12;4(3):751-786. doi: 10.1021/acsbiomaterials.7b00631. Epub 2018 Feb 6.
2
Growth factor delivery strategies for rotator cuff repair and regeneration.生长因子在肩袖修复和再生中的应用策略。
Int J Pharm. 2018 Jun 15;544(2):358-371. doi: 10.1016/j.ijpharm.2018.01.006. Epub 2018 Jan 6.
4
Impact of matrix stiffness on fibroblast function.基质硬度对成纤维细胞功能的影响。
Mater Sci Eng C Mater Biol Appl. 2017 May 1;74:146-151. doi: 10.1016/j.msec.2017.02.001. Epub 2017 Feb 7.
9
The role of TGF-β1 during skeletal muscle regeneration.转化生长因子-β1在骨骼肌再生过程中的作用。
Cell Biol Int. 2017 Jul;41(7):706-715. doi: 10.1002/cbin.10725. Epub 2017 Jan 19.
10
Growth Factors for Skeletal Muscle Tissue Engineering.用于骨骼肌组织工程的生长因子
Cells Tissues Organs. 2016;202(3-4):169-179. doi: 10.1159/000444671. Epub 2016 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验