Suppr超能文献

肌球蛋白中影响后门π释放的结构因素的分子动力学分析

Molecular dynamics analysis of structural factors influencing back door pi release in myosin.

作者信息

Lawson J David, Pate Edward, Rayment Ivan, Yount Ralph G

机构信息

Department of Chemistry, Washington State University, Pullman, Washington 99164, USA.

出版信息

Biophys J. 2004 Jun;86(6):3794-803. doi: 10.1529/biophysj.103.037390.

Abstract

The back door has been proposed to be an exit pathway from the myosin active site for phosphate (P(i)) generated by adenosine 5'-triphosphate hydrolysis. We used molecular dynamics simulations to investigate the interaction of P(i) with the back door and the plausibility of P(i) release via this route. Molecular dynamics simulations were performed on the Dictyostelium motor domain with bound Mg.adenosine 5'-diphosphate (ADP) and P(i), modeled upon the Mg.ADP.BeF(x) and Mg.ADP.V(i) structures. Simulations revealed that the relaxation of ADP and free P(i) from their initial positions reduced the diameter of the back door via motions of switch 1 and switch 2 located in the upper and lower 50-kDa subdomains, respectively. In neither simulation could P(i) freely diffuse out the back door. Water molecules, however, could flux through the back door in the Mg.ADP.BeF(x)-based simulation but not in the Mg.ADP.V(i)-based simulation. In neither structure was water observed fluxing through the main (front door) entrance. These observations suggest that the ability of P(i) to leave via the back door is linked tightly to conformational changes between the upper and lower 50-kDa subdomains. The simulations offer structural explanations for (18)O-exchange with P(i) at the active site, and P(i) release being the rate-limiting step in the myosin adenosine 5'-triphosphatase.

摘要

有人提出,后门是磷酸根(P(i))从肌球蛋白活性位点排出的途径,该磷酸根由腺苷5'-三磷酸水解产生。我们使用分子动力学模拟来研究P(i)与后门的相互作用以及通过该途径释放P(i)的合理性。在结合了Mg.腺苷5'-二磷酸(ADP)和P(i)的盘基网柄菌运动结构域上进行分子动力学模拟,该结构域基于Mg.ADP.BeF(x)和Mg.ADP.V(i)结构建模。模拟结果显示,ADP和游离P(i)从其初始位置的松弛通过分别位于上下50 kDa子结构域中的开关1和开关2的运动减小了后门的直径。在任何一种模拟中,P(i)都不能自由地从后门扩散出去。然而,在基于Mg.ADP.BeF(x)的模拟中,水分子可以通过后门流动,但在基于Mg.ADP.V(i)的模拟中则不能。在这两种结构中,都没有观察到水分子通过主要(前门)入口流动。这些观察结果表明,P(i)通过后门离开的能力与上下50 kDa子结构域之间的构象变化紧密相关。这些模拟为活性位点处P(i)的(18)O交换以及P(i)释放是肌球蛋白腺苷5'-三磷酸酶中的限速步骤提供了结构解释。

相似文献

1
Molecular dynamics analysis of structural factors influencing back door pi release in myosin.
Biophys J. 2004 Jun;86(6):3794-803. doi: 10.1529/biophysj.103.037390.
3
4
Binding modes of decavanadate to myosin and inhibition of the actomyosin ATPase activity.
Biochim Biophys Acta. 2007 Apr;1774(4):474-80. doi: 10.1016/j.bbapap.2007.02.004. Epub 2007 Feb 20.
6
Structural rearrangements in the active site of smooth-muscle myosin.
Biophys J. 2005 Sep;89(3):1882-92. doi: 10.1529/biophysj.105.059840. Epub 2005 Jun 10.
8
Activation of the calcium-regulated thin filament by myosin strong binding.
Biophys J. 2003 Oct;85(4):2484-91. doi: 10.1016/S0006-3495(03)74671-2.

引用本文的文献

1
Single-molecule tracking reveals dual front door/back door inhibition of Cel7A cellulase by its product cellobiose.
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2322567121. doi: 10.1073/pnas.2322567121. Epub 2024 Apr 22.
3
Cryo-EM structure of the autoinhibited state of myosin-2.
Sci Adv. 2021 Dec 24;7(52):eabk3273. doi: 10.1126/sciadv.abk3273. Epub 2021 Dec 22.
4
How Myosin Generates Force on Actin Filaments.
Trends Biochem Sci. 2016 Dec;41(12):989-997. doi: 10.1016/j.tibs.2016.09.006. Epub 2016 Oct 4.
5
A gating mechanism for Pi release governs the mRNA unwinding by eIF4AI during translation initiation.
Nucleic Acids Res. 2015 Dec 2;43(21):10157-67. doi: 10.1093/nar/gkv1033. Epub 2015 Oct 12.
6
Orientation of the N- and C-terminal lobes of the myosin regulatory light chain in cardiac muscle.
Biophys J. 2015 Jan 20;108(2):304-14. doi: 10.1016/j.bpj.2014.11.049.
7
A new mechanokinetic model for muscle contraction, where force and movement are triggered by phosphate release.
J Muscle Res Cell Motil. 2014 Dec;35(5-6):295-306. doi: 10.1007/s10974-014-9391-z. Epub 2014 Oct 16.
8
Phosphate release coupled to rotary motion of F1-ATPase.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16468-73. doi: 10.1073/pnas.1305497110. Epub 2013 Sep 23.
9
Muscle contraction mechanism based on single molecule measurements.
J Muscle Res Cell Motil. 2012 Dec;33(6):395-402. doi: 10.1007/s10974-012-9332-7. Epub 2012 Dec 1.
10
Myosin-V as a mechanical sensor: an elastic network study.
Biophys J. 2012 Feb 8;102(3):542-51. doi: 10.1016/j.bpj.2011.12.013. Epub 2012 Feb 7.

本文引用的文献

1
An all atom force field for simulations of proteins and nucleic acids.
J Comput Chem. 1986 Apr;7(2):230-252. doi: 10.1002/jcc.540070216.
2
Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide.
Nature. 2003 Sep 25;425(6956):423-7. doi: 10.1038/nature02005.
3
A structural model for actin-induced nucleotide release in myosin.
Nat Struct Biol. 2003 Oct;10(10):826-30. doi: 10.1038/nsb987. Epub 2003 Sep 21.
4
Myosin cleft movement and its coupling to actomyosin dissociation.
Nat Struct Biol. 2003 Oct;10(10):831-5. doi: 10.1038/nsb986. Epub 2003 Sep 21.
5
Actin-induced closure of the actin-binding cleft of smooth muscle myosin.
J Biol Chem. 2002 Jul 5;277(27):24114-9. doi: 10.1074/jbc.M111253200. Epub 2002 Apr 16.
6
Effects of substituting uridine triphosphate for ATP on the crossbridge cycle of rabbit muscle.
J Physiol. 2001 Dec 15;537(Pt 3):907-21. doi: 10.1111/j.1469-7793.2001.00907.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验