Suppr超能文献

乙肝病毒衣壳组装中相互竞争的疏水作用和屏蔽库仑作用

Competing hydrophobic and screened-coulomb interactions in hepatitis B virus capsid assembly.

作者信息

Kegel Willem K, Schoot Pv Paul van der

机构信息

Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Research Institute, Utrecht University, Utrecht, The Netherlands.

出版信息

Biophys J. 2004 Jun;86(6):3905-13. doi: 10.1529/biophysj.104.040055.

Abstract

Recent experiments show that, in the range from approximately 15 to 45 degrees C, an increase in the temperature promotes the spontaneous assembly into capsids of the Escherichia coli-expressed coat proteins of hepatitis B virus. Within that temperature interval, an increase in ionic strength up to five times that of standard physiological conditions also acts to promote capsid assembly. To explain both observations we propose an interaction of mean force between the protein subunits that is the sum of an attractive hydrophobic interaction, driving the self-assembly, and a repulsive electrostatic interaction, opposing the self-assembly. We find that the binding strength of the capsid subunits increases with temperature virtually independently of the ionic strength, and that, at fixed temperature, the binding strength increases with the square root of ionic strength. Both predictions are in quantitative agreement with experiment. We point out the similarities of capsid assembly in general and the micellization of surfactants. Finally we make plausible that electrostatic repulsion between the native core subunits of a large class of virus suppresses the formation in vivo of empty virus capsids, that is, without the presence of the charge-neutralizing nucleic acid.

摘要

最近的实验表明,在大约15至45摄氏度的范围内,温度升高会促进乙肝病毒在大肠杆菌中表达的衣壳蛋白自发组装成衣壳。在该温度区间内,离子强度增加至标准生理条件下的五倍也会促进衣壳组装。为了解释这两个观察结果,我们提出蛋白质亚基之间平均作用力的相互作用,它是驱动自组装的吸引性疏水相互作用与反对自组装的排斥性静电相互作用的总和。我们发现衣壳亚基的结合强度随温度升高而增加,几乎与离子强度无关,并且在固定温度下,结合强度随离子强度的平方根增加。这两个预测都与实验定量一致。我们指出了衣壳组装与表面活性剂胶束化总体上的相似之处。最后,我们有理由认为,一大类病毒的天然核心亚基之间的静电排斥会抑制体内空病毒衣壳的形成,即没有电荷中和核酸的情况下。

相似文献

1
Competing hydrophobic and screened-coulomb interactions in hepatitis B virus capsid assembly.
Biophys J. 2004 Jun;86(6):3905-13. doi: 10.1529/biophysj.104.040055.
2
Weak protein-protein interactions are sufficient to drive assembly of hepatitis B virus capsids.
Biochemistry. 2002 Oct 1;41(39):11525-31. doi: 10.1021/bi0261645.
3
A molecular thermodynamic model for the stability of hepatitis B capsids.
J Chem Phys. 2014 Jun 21;140(23):235101. doi: 10.1063/1.4882068.
5
Role of electrostatic interactions in the assembly of empty spherical viral capsids.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec;76(6 Pt 1):061906. doi: 10.1103/PhysRevE.76.061906. Epub 2007 Dec 12.
6
Kinetics versus Thermodynamics in Virus Capsid Polymorphism.
J Phys Chem B. 2016 Jul 7;120(26):6003-9. doi: 10.1021/acs.jpcb.6b01953. Epub 2016 Apr 8.
8
Cell-Free Hepatitis B Virus Capsid Assembly Dependent on the Core Protein C-Terminal Domain and Regulated by Phosphorylation.
J Virol. 2016 May 27;90(12):5830-5844. doi: 10.1128/JVI.00394-16. Print 2016 Jun 15.
9
Electrostatics and the assembly of an RNA virus.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jun;71(6 Pt 1):061928. doi: 10.1103/PhysRevE.71.061928. Epub 2005 Jun 30.

引用本文的文献

1
Controlling Assembly of Hybrid DNA Nanostructures into Higher-Order Structures via Hydrophobicity.
Angew Chem Int Ed Engl. 2025 Aug 18;64(34):e202507844. doi: 10.1002/anie.202507844. Epub 2025 Jul 2.
3
Theoretical Studies on Assembly, Physical Stability, and Dynamics of Viruses.
Subcell Biochem. 2024;105:693-741. doi: 10.1007/978-3-031-65187-8_19.
4
Cellular and Nuclear Forces: An Overview.
Methods Mol Biol. 2025;2881:3-39. doi: 10.1007/978-1-0716-4280-1_1.
5
Electrostatic Theory of the Acidity of the Solution in the Lumina of Viruses and Virus-Like Particles.
J Phys Chem B. 2023 Mar 16;127(10):2160-2168. doi: 10.1021/acs.jpcb.2c08604. Epub 2023 Mar 7.
6
Codon usage bias of Venezuelan equine encephalitis virus and its host adaption.
Virus Res. 2023 Apr 15;328:199081. doi: 10.1016/j.virusres.2023.199081. Epub 2023 Mar 3.
7
Engineering Metastability into a Virus-like Particle to Enable Triggered Dissociation.
J Am Chem Soc. 2023 Feb 1;145(4):2322-2331. doi: 10.1021/jacs.2c10937. Epub 2023 Jan 18.
8
Electrostatics Drive the Molecular Chaperone BiP to Preferentially Bind Oligomerized States of a Client Protein.
J Mol Biol. 2022 Jul 15;434(13):167638. doi: 10.1016/j.jmb.2022.167638. Epub 2022 May 18.
9
Hysteresis in Hepatitis B Virus (HBV) Requires Assembly of Near-Perfect Capsids.
Biochemistry. 2022 Apr 5;61(7):505-513. doi: 10.1021/acs.biochem.1c00810. Epub 2022 Mar 8.
10
Polyelectrolyte Encapsulation and Confinement within Protein Cage-Inspired Nanocompartments.
Pharmaceutics. 2021 Sep 24;13(10):1551. doi: 10.3390/pharmaceutics13101551.

本文引用的文献

1
ASSEMBLY AND STABILITY OF THE TOBACCO MOSAIC VIRUS PARTICLE.
Adv Protein Chem. 1963;18:37-121. doi: 10.1016/s0065-3233(08)60268-5.
2
Viral self-assembly as a thermodynamic process.
Phys Rev Lett. 2003 Jun 20;90(24):248101. doi: 10.1103/PhysRevLett.90.248101. Epub 2003 Jun 17.
3
Weak protein-protein interactions are sufficient to drive assembly of hepatitis B virus capsids.
Biochemistry. 2002 Oct 1;41(39):11525-31. doi: 10.1021/bi0261645.
4
Hydrophobic forces between protein molecules in aqueous solutions of concentrated electrolyte.
Biophys Chem. 2002 Aug 2;98(3):249-65. doi: 10.1016/s0301-4622(02)00071-6.
5
A small molecule inhibits and misdirects assembly of hepatitis B virus capsids.
J Virol. 2002 May;76(10):4848-54. doi: 10.1128/jvi.76.10.4848-4854.2002.
6
Phase transition analogous to Bose-Einstein condensation in systems of noninteracting surfactant aggregates.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Mar;65(3 Pt 1):031406. doi: 10.1103/PhysRevE.65.031406. Epub 2002 Feb 27.
7
Virus Particle Explorer (VIPER), a website for virus capsid structures and their computational analyses.
J Virol. 2001 Dec;75(24):11943-7. doi: 10.1128/JVI.75.24.11943-11947.2001.
8
Using phase transitions to investigate the effect of salts on protein interactions.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Jun;53(6):6325-6335. doi: 10.1103/physreve.53.6325.
9
Statistical mechanics of closed fluid membranes.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Dec;52(6):5918-5945. doi: 10.1103/physreve.52.5918.
10
Thermodynamic Quantities of Surface Formation of Aqueous Electrolyte Solutions.
J Colloid Interface Sci. 1999 Jan 15;209(2):398-402. doi: 10.1006/jcis.1998.5928.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验