González Juan R, Peña Edsel A
Servicio de Epidemiología y Registro del Cáncer, Institut Català d'Oncologia, Avda. Gran Vía s/n, km 2,7, L'Hospitalet de Llobregat 08907-Barcelona, Spain.
Rev Esp Salud Publica. 2004 Mar-Apr;78(2):189-99. doi: 10.1590/s1135-57272004000200006.
Recurrent events when we deal with survival studies demand a different methodology from what is used in standard survival analysis. The main problem that we found when we make inference in these kind of studies is that the observations may not be independent. Thus, biased and inefficient estimators can be obtained if we do not take into account this fact. In the independent case, the interocurrence survival function can be estimated by the generalization of the limit product estimator (Peña et al. (2001)). However, if data are correlated, other models should be used such as frailty models or an estimator proposed by Wang and Chang (1999), that take into account the fact that interocurrence times were or not correlated. The aim of this paper has been the illustration of these approaches by using two real data sets.
在处理生存研究中的复发事件时,需要一种与标准生存分析中所使用的方法不同的方法。当我们在这类研究中进行推断时,发现的主要问题是观测值可能不独立。因此,如果我们不考虑这一事实,就可能获得有偏差且效率低下的估计量。在独立情况下,复发生存函数可以通过极限乘积估计量的推广来估计(佩尼亚等人,2001年)。然而,如果数据是相关的,则应使用其他模型,如脆弱模型或王和张(1999年)提出的估计量,这些模型考虑了复发时间是否相关这一事实。本文的目的是通过使用两个真实数据集来说明这些方法。