Suppr超能文献

具有缺失观测值的随机过程均值函数的非参数估计。

Nonparametric estimation of the mean function of a stochastic process with missing observations.

作者信息

Hu X Joan, Lagakos Stephen W

机构信息

Department of Statistics and Actuarial Science, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.

出版信息

Lifetime Data Anal. 2007 Mar;13(1):51-73. doi: 10.1007/s10985-006-9030-0.

Abstract

In an attempt to identify similarities between methods for estimating a mean function with different types of response or observation processes, we explore a general theoretical framework for nonparametric estimation of the mean function of a response process subject to incomplete observations. Special cases of the response process include quantitative responses and discrete state processes such as survival processes, counting processes and alternating binary processes. The incomplete data are assumed to arise from a general response-independent observation process, which includes right-censoring, interval censoring, periodic observation, and mixtures of these as special cases. We explore two criteria for defining nonparametric estimators, one based on the sample mean of available data and the other inspired by the construction of Kaplan-Meier (or product-limit) estimator [J. Am. Statist. Assoc. 53 (1958) 457] for right-censored survival data. We show that under regularity conditions the estimated mean functions resulting from both criteria are consistent and converge weakly to Gaussian processes, and provide consistent estimators of their covariance functions. We then evaluate these general criteria for specific responses and observation processes, and show how they lead to familiar estimators for some response and observation processes and new estimators for others. We illustrate the latter with data from an recently completed AIDS clinical trial.

摘要

为了识别用于估计具有不同类型响应或观测过程的均值函数的方法之间的相似性,我们探索了一个用于对受不完全观测影响的响应过程的均值函数进行非参数估计的一般理论框架。响应过程的特殊情况包括定量响应和离散状态过程,如生存过程、计数过程和交替二元过程。假设不完全数据来自一个一般的与响应无关的观测过程,其中包括右删失、区间删失、定期观测以及这些情况的混合作为特殊情形。我们探索了两种定义非参数估计量的准则,一种基于可用数据的样本均值,另一种受用于右删失生存数据的Kaplan-Meier(或乘积限)估计量[《美国统计协会杂志》53 (1958) 457]的构造启发。我们表明,在正则条件下,由这两种准则得到的估计均值函数是一致的,并且弱收敛到高斯过程,并提供了它们协方差函数的一致估计量。然后,我们针对特定的响应和观测过程评估这些一般准则,并展示它们如何导致一些响应和观测过程的熟悉估计量以及其他过程的新估计量。我们用最近完成的一项艾滋病临床试验的数据来说明后者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验