Suppr超能文献

从序列到结构再回归:预测蛋白质与DNA结合的方法

From sequence to structure and back again: approaches for predicting protein-DNA binding.

作者信息

Höglund Annette, Kohlbacher Oliver

机构信息

Department for Simulation of Biological Systems, Eberhard Karls University Tübingen, Sand 14, D-72076 Tübingen, Germany.

出版信息

Proteome Sci. 2004 Jun 17;2(1):3. doi: 10.1186/1477-5956-2-3.

Abstract

Gene regulation in higher organisms is achieved by a complex network of transcription factors (TFs). Modulating gene expression and exploring gene function are major aims in molecular biology. Furthermore, the identification of putative target genes for a certain TF serve as powerful tools for specific targeting of rational drugs.Detecting the short and variable transcription factor binding sites (TFBSs) in genomic DNA is an intriguing challenge for computational and structural biologists. Fast and reliable computational methods for predicting TFBSs on a whole-genome scale offer several advantages compared to the current experimental methods that are rather laborious and slow. Two main approaches are being explored, advanced sequence-based algorithms and structure-based methods.The aim of this review is to outline the computational and experimental methods currently being applied in the field of protein-DNA interactions. With a focus on the former, the current state of the art in modeling these interactions is discussed. Surveying sequence and structure-based methods for predicting TFBSs, we conclude that in order to achieve a sound and specific method applicable on genomic sequences it is desirable and important to bring these two approaches together.

摘要

高等生物中的基因调控是通过转录因子(TFs)的复杂网络实现的。调节基因表达和探索基因功能是分子生物学的主要目标。此外,确定某个转录因子的推定靶基因是合理药物特异性靶向的有力工具。检测基因组DNA中短且可变的转录因子结合位点(TFBSs)对计算生物学家和结构生物学家来说是一项具有挑战性的任务。与目前既费力又缓慢的实验方法相比,用于在全基因组规模上预测TFBSs的快速可靠的计算方法具有多个优势。目前正在探索两种主要方法,即基于序列的先进算法和基于结构的方法。本综述的目的是概述目前在蛋白质-DNA相互作用领域应用的计算和实验方法。重点关注前者,讨论了这些相互作用建模的当前技术水平。通过审视基于序列和结构的预测TFBSs的方法,我们得出结论,为了实现适用于基因组序列的合理且特异的方法,将这两种方法结合起来是可取且重要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03a0/441406/29c12ab2a344/1477-5956-2-3-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验