Pankow James F, Luo Wentai, Tavakoli Ameer D, Chen Cai, Isabelle Lorne M
OHSU Cancer Institute, and OGI School of Science & Engineering, Oregon Health & Science University, Portland, Oregon 97291, USA.
Chem Res Toxicol. 2004 Jun;17(6):805-13. doi: 10.1021/tx0342316.
Mainstream tobacco smoke (MTS) was collected from Camel and Marlboro cigarettes for the determination of the delivery levels and equilibrium gas/particle partitioning constants K(p) (m(3) microg(-)(1)) of 26 volatile organic compounds (VOCs) of toxicological interest. K(p) values are important for understanding the fractional distribution of each compound of interest between the gas and the particle phases of MTS. The experimental method involved (i) drawing a smoke sample into a Teflon sampling bag at 20 degrees C, (ii) allowing the smoke particulate matter (PM) to collect on the walls of the bag, (iii) sampling the bag to determine the initial gas phase concentration of each VOC, (iv) removing the gas phase from the bag, (v) refilling the bag with humidified nitrogen gas, (vi) reestablishing the gas/PM equilibrium, and (vii) redetermining the gas phase concentrations. For each smoke sample, a comparison of the initial and redetermined gas phase concentrations allowed calculation of the total (i.e., gas + particle) delivery level (= m(tot), ng cig(-)(1)) and K(p) value (= c(p)/c(g)) at 20 degrees C for each compound, where c(p) (ng microg(-)(1)) = concentration in the PM phase and c(g) (ng m(-)(3)) = concentration in the gas phase. Significant deliveries were observed for a number of carcinogenic VOCs. For the Camel cigarettes tested, the average m(tot) values for 1,3-butadiene, acrylonitrile, and benzene were 10(4.6), 10(4.4), and 10(4.8) ng cig(-)(1), respectively; for Marlboro, the m(tot) values were 10(5.0), 10(4.6), and 10(4.7) ng cig(-)(1), respectively. For each of the 26 VOCs, the smoke PM from the two brands yielded very similar K(p) values at 20 degrees C. In addition, the vapor pressure-dependent K(p) values of the 26 VOCs were in close agreement with predictions made by the Pankow theory of absorptive gas/particle partitioning [Pankow, J. F. (1994) Atmos. Environ. 28, 185-188]. These results can be used in general predictions of chemical behavior in tobacco smoke, including deposition mechanisms and rates in the respiratory tract from inhaled MTS. Example calculations are provided to illustrate how the gas phase fraction at equilibrium (f(g,e)) increases strongly with increasing compound vapor pressure and temperature and with dilution of the inhaled tobacco smoke total PM concentration (microg m(-)(3)).
从骆驼牌和万宝路香烟中收集主流烟草烟雾(MTS),以测定26种具有毒理学意义的挥发性有机化合物(VOCs)的递送水平和平衡气/粒分配常数K(p)(m³ μg⁻¹)。K(p)值对于理解感兴趣的每种化合物在MTS的气相和颗粒相之间的分数分布很重要。实验方法包括:(i)在20℃下将烟雾样品吸入特氟龙采样袋中;(ii)使烟雾颗粒物(PM)收集在袋壁上;(iii)对袋子进行采样以确定每种VOC的初始气相浓度;(iv)从袋子中去除气相;(v)用加湿的氮气重新填充袋子;(vi)重新建立气/PM平衡;(vii)重新测定气相浓度。对于每个烟雾样品,通过比较初始和重新测定的气相浓度,可以计算出每种化合物在20℃下的总(即气相 + 颗粒)递送水平(= m(tot),ng cig⁻¹)和K(p)值(= c(p)/c(g)),其中c(p)(ng μg⁻¹)= PM相中的浓度,c(g)(ng m⁻³)=气相中的浓度。观察到多种致癌VOCs有显著递送。对于测试的骆驼牌香烟,1,3 - 丁二烯、丙烯腈和苯的平均m(tot)值分别为10⁴.⁶、10⁴.⁴和10⁴.⁸ ng cig⁻¹;对于万宝路,m(tot)值分别为10⁵.⁰、10⁴.⁶和10⁴.⁷ ng cig⁻¹。对于26种VOCs中的每一种,两个品牌的烟雾PM在20℃下产生非常相似的K(p)值。此外,26种VOCs的依赖蒸气压的K(p)值与潘科夫吸收性气/粒分配理论[潘科夫,J. F.(1994年)《大气环境》28,185 - 188]所做的预测密切一致。这些结果可用于对烟草烟雾中化学行为的一般预测,包括吸入MTS在呼吸道中的沉积机制和速率。提供了示例计算以说明平衡时的气相分数(f(g,e))如何随着化合物蒸气压和温度的增加以及吸入烟草烟雾总PM浓度(μg m⁻³)的稀释而强烈增加。