Goodman Allen C, Peng Yingwei, Hankin Janet R, Kalist David E, Spurr Stephen J
Department of Economics, Wayne State University, 2074 FAB, Detroit, MI 48202, USA.
Stat Med. 2004 Jul 15;23(13):2071-87. doi: 10.1002/sim.1798.
This paper analyses a case in censored failure time data problems where some observations are potentially censored. The traditional models for failure time data implicitly assume that the censoring status for each observation is deterministic. Therefore, they cannot be applied directly to the potentially censored data. We propose an estimator that uses resampling techniques to approximate censoring probabilities for individual observations. A Monte Carlo simulation study shows that the proposed estimator properly corrects biases that would otherwise be present had it been assumed that either all potentially censored observations are censored or that no censoring has occurred. Finally, we apply the estimator to a health insurance claims database.
本文分析了删失失效时间数据问题中的一个案例,其中一些观测值可能被删失。传统的失效时间数据模型隐含地假设每个观测值的删失状态是确定的。因此,它们不能直接应用于可能被删失的数据。我们提出了一种估计器,该估计器使用重采样技术来近似单个观测值的删失概率。蒙特卡罗模拟研究表明,所提出的估计器能够正确校正偏差,否则如果假设所有可能被删失的观测值都被删失或未发生删失,就会出现这些偏差。最后,我们将该估计器应用于一个健康保险理赔数据库。