Almon Richard R, DuBois Debra C, Piel William H, Jusko William J
Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY 14260, USA.
Pharmacogenomics. 2004 Jul;5(5):525-52. doi: 10.1517/14622416.5.5.525.
High-throughput data collection using gene microarrays has great potential as a method for addressing the pharmacogenomics of complex biological systems. Similarly, mechanism-based pharmacokinetic/pharmacodynamic modeling provides a tool for formulating quantitative testable hypotheses concerning the responses of complex biological systems. As the response of such systems to drugs generally entails cascades of molecular events in time, a time series design provides the best approach to capturing the full scope of drug effects. A major problem in using microarrays for high-throughput data collection is sorting through the massive amount of data in order to identify probe sets and genes of interest. Due to its inherent redundancy, a rich time series containing many time points and multiple samples per time point allows for the use of less stringent criteria of expression, expression change and data quality for initial filtering of unwanted probe sets. The remaining probe sets can then become the focus of more intense scrutiny by other methods, including temporal clustering, functional clustering and pharmacokinetic/pharmacodynamic modeling, which provide additional ways of identifying the probes and genes of pharmacological interest.
使用基因微阵列进行高通量数据收集作为一种解决复杂生物系统药物基因组学问题的方法具有巨大潜力。同样,基于机制的药代动力学/药效学建模为制定关于复杂生物系统反应的定量可测试假设提供了一种工具。由于此类系统对药物的反应通常涉及随时间的分子事件级联,时间序列设计提供了捕捉药物效应全貌的最佳方法。使用微阵列进行高通量数据收集的一个主要问题是要梳理大量数据,以便识别感兴趣的探针集和基因。由于其固有的冗余性,一个包含许多时间点且每个时间点有多个样本的丰富时间序列允许使用不太严格的表达、表达变化和数据质量标准对不需要的探针集进行初步筛选。然后,其余的探针集可以成为其他方法更深入研究的焦点,这些方法包括时间聚类、功能聚类和药代动力学/药效学建模,它们提供了识别具有药理学意义的探针和基因的其他方法。